
Hibernate in Action

Hibernate in Action

CHRISTIAN BAUER
 GAVIN KING

M A N N I N G

Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394-15-X

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 07 06 05 04

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

 contents
foreword xi
preface xiii
acknowledgments xv
about this book xvi
about Hibernate3 and EJB 3 xx
author online xxi
about the title and cover xxii

1 Understanding object/relational persistence 1
1.1 What is persistence? 3

Relational databases 3 ■ Understanding SQL 4 ■ Using SQL
in Java 5 ■ Persistence in object-oriented applications 5

1.2 The paradigm mismatch 7
The problem of granularity 9 ■ The problem of subtypes 10
The problem of identity 11 ■ Problems relating to associations 13
The problem of object graph navigation 14 ■ The cost of the
mismatch 15

1.3 Persistence layers and alternatives 16
Layered architecture 17 ■ Hand-coding a persistence layer with
SQL/JDBC 18 ■ Using serialization 19 ■ Considering EJB
entity beans 20 ■ Object-oriented database systems 21
Other options 22

1.4 Object/relational mapping 22
What is ORM? 23 ■ Generic ORM problems 25
Why ORM? 26
v

1.5 Summary 29

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

vi CONTENTS
2 Introducing and integrating Hibernate 30
2.1 “Hello World” with Hibernate 31

2.2 Understanding the architecture 36
The core interfaces 38 ■ Callback interfaces 40
Types 40 ■ Extension interfaces 41

2.3 Basic configuration 41
Creating a SessionFactory 42 ■ Configuration in
non-managed environments 45 ■ Configuration in
managed environments 48

2.4 Advanced configuration settings 51
Using XML-based configuration 51 ■ JNDI-bound
SessionFactory 53 ■ Logging 54 ■ Java Management
Extensions (JMX) 55

2.5 Summary 58

3 Mapping persistent classes 59
3.1 The CaveatEmptor application 60

Analyzing the business domain 61
The CaveatEmptor domain model 61

3.2 Implementing the domain model 64
Addressing leakage of concerns 64 ■ Transparent and
automated persistence 65 ■ Writing POJOs 67
Implementing POJO associations 69 ■ Adding logic to
accessor methods 73

3.3 Defining the mapping metadata 75
Metadata in XML 75 ■ Basic property and class
mappings 78 ■ Attribute-oriented programming 84
Manipulating metadata at runtime 86

3.4 Understanding object identity 87
Identity versus equality 87 ■ Database identity with
Hibernate 88 ■ Choosing primary keys 90

3.5 Fine-grained object models 92
Entity and value types 93 ■ Using components 93

3.6 Mapping class inheritance 97

Table per concrete class 97 ■ Table per class hierarchy 99
Table per subclass 101 ■ Choosing a strategy 104

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

CONTENTS vii
3.7 Introducing associations 105
Managed associations? 106 ■ Multiplicity 106
The simplest possible association 107 ■ Making the association
bidirectional 108 ■ A parent/child relationship 111

3.8 Summary 112

4 Working with persistent objects 114
4.1 The persistence lifecycle 115

Transient objects 116 ■ Persistent objects 117 ■ Detached
objects 118 ■ The scope of object identity 119 ■ Outside the
identity scope 121 ■ Implementing equals() and hashCode() 122

4.2 The persistence manager 126
Making an object persistent 126 ■ Updating the persistent state
of a detached instance 127 ■ Retrieving a persistent object 129
Updating a persistent object 129 ■ Making a persistent object
transient 129 ■ Making a detached object transient 130

4.3 Using transitive persistence in Hibernate 131
Persistence by reachability 131 ■ Cascading persistence with
Hibernate 133 ■ Managing auction categories 134
Distinguishing between transient and detached instances 138

4.4 Retrieving objects 139
Retrieving objects by identifier 140 ■ Introducing HQL 141
Query by criteria 142 ■ Query by example 143 ■ Fetching
strategies 143 ■ Selecting a fetching strategy in mappings 146
Tuning object retrieval 151

4.5 Summary 152

5 Transactions, concurrency, and caching 154
5.1 Transactions, concurrency, and caching 154

5.2 Understanding database transactions 156
JDBC and JTA transactions 157 ■ The Hibernate Transaction
API 158 ■ Flushing the Session 160 ■ Understanding isolation
levels 161 ■ Choosing an isolation level 163 ■ Setting an
isolation level 165 ■ Using pessimistic locking 165

5.3 Working with application transactions 168

Using managed versioning 169 ■ Granularity of a
Session 172 ■ Other ways to implement optimistic locking 174

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

viii CONTENTS
5.4 Caching theory and practice 175
Caching strategies and scopes 176 ■ The Hibernate cache
architecture 179 ■ Caching in practice 185

5.5 Summary 194

6 Advanced mapping concepts 195
6.1 Understanding the Hibernate type system 196

Built-in mapping types 198 ■ Using mapping types 200
6.2 Mapping collections of value types 211

Sets, bags, lists, and maps 211
6.3 Mapping entity associations 220

One-to-one associations 220 ■ Many-to-many associations 225
6.4 Mapping polymorphic associations 234

Polymorphic many-to-one associations 234 ■ Polymorphic
collections 236 ■ Polymorphic associations and table-per-
concrete-class 237

6.5 Summary 239

7 Retrieving objects efficiently 241
7.1 Executing queries 243

The query interfaces 243 ■ Binding parameters 245
Using named queries 249

7.2 Basic queries for objects 250
The simplest query 250 ■ Using aliases 251 ■ Polymorphic
queries 251 ■ Restriction 252 ■ Comparison operators 253
String matching 255 ■ Logical operators 256 ■ Ordering query
results 257

7.3 Joining associations 258
Hibernate join options 259 ■ Fetching associations 260
Using aliases with joins 262 ■ Using implicit joins 265
Theta-style joins 267 ■ Comparing identifiers 268

7.4 Writing report queries 269
Projection 270 ■ Using aggregation 272 ■ Grouping 273

Restricting groups with having 274 ■ Improving performance
with report queries 275

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

CONTENTS ix
7.5 Advanced query techniques 276
Dynamic queries 276 ■ Collection filters 279
Subqueries 281 ■ Native SQL queries 283

7.6 Optimizing object retrieval 286
Solving the n+1 selects problem 286 ■ Using iterate()
queries 289 ■ Caching queries 290

7.7 Summary 292

8 Writing Hibernate applications 294
8.1 Designing layered applications 295

Using Hibernate in a servlet engine 296
Using Hibernate in an EJB container 311

8.2 Implementing application transactions 320
Approving a new auction 321 ■ Doing it the hard way 322
Using detached persistent objects 324 ■ Using a long session 325
Choosing an approach to application transactions 329

8.3 Handling special kinds of data 330
Legacy schemas and composite keys 330 ■ Audit logging 340

8.4 Summary 347

9 Using the toolset 348
9.1 Development processes 349

Top down 350 ■ Bottom up 350 ■ Middle out (metadata
oriented) 350 ■ Meet in the middle 350
Roundtripping 351

9.2 Automatic schema generation 351
Preparing the mapping metadata 352 ■ Creating the
schema 355 ■ Updating the schema 357

9.3 Generating POJO code 358
Adding meta-attributes 358 ■ Generating finders 360
Configuring hbm2java 362 ■ Running hbm2java 363

9.4 Existing schemas and Middlegen 364
Starting Middlegen 364 ■ Restricting tables and

relationships 366 ■ Customizing the metadata generation 368
Generating hbm2java and XDoclet metadata 370

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

x CONTENTS
9.5 XDoclet 372
Setting value type attributes 372 ■ Mapping entity
associations 374 ■ Running XDoclet 375

9.6 Summary 376

appendix A: SQL fundamentals 378

appendix B: ORM implementation strategies 382
B.1 Properties or fields? 383

B.2 Dirty-checking strategies 384

appendix C: Back in the real world 388
C.1 The strange copy 389

C.2 The more the better 390

C.3 We don’t need primary keys 390

C.4 Time isn’t linear 391

C.5 Dynamically unsafe 391

C.6 To synchronize or not? 392

C.7 Really fat client 393

C.8 Resuming Hibernate 394

references 395
index 397
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

 foreword
Relational databases are indisputably at the core of the modern enterprise.

 While modern programming languages, including JavaTM, provide an intuitive,
object-oriented view of application-level business entities, the enterprise data
underlying these entities is heavily relational in nature. Further, the main strength
of the relational model—over earlier navigational models as well as over later
OODB models—is that by design it is intrinsically agnostic to the programmatic
manipulation and application-level view of the data that it serves up.

 Many attempts have been made to bridge relational and object-oriented tech-
nologies, or to replace one with the other, but the gap between the two is one of
the hard facts of enterprise computing today. It is this challenge—to provide a
bridge between relational data and JavaTM objects—that Hibernate takes on
through its object/relational mapping (ORM) approach. Hibernate meets this
challenge in a very pragmatic, direct, and realistic way.

 As Christian Bauer and Gavin King demonstrate in this book, the effective use
of ORM technology in all but the simplest of enterprise environments requires
understanding and configuring how the mediation between relational data and
objects is performed. This demands that the developer be aware and knowledge-
able both of the application and its data requirements, and of the SQL query lan-
guage, relational storage structures, and the potential for optimization that
relational technology offers.

 Not only does Hibernate provide a full-function solution that meets these
requirements head on, it is also a flexible and configurable architecture. Hiber-
nate’s developers designed it with modularity, pluggability, extensibility, and user
customization in mind. As a result, in the few years since its initial release,
xi

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

xii FOREWORD
Hibernate has rapidly become one of the leading ORM technologies for enter-
prise developers—and deservedly so.

 This book provides a comprehensive overview of Hibernate. It covers how to
use its type mapping capabilities and facilities for modeling associations and
inheritance; how to retrieve objects efficiently using the Hibernate query lan-
guage; how to configure Hibernate for use in both managed and unmanaged
environments; and how to use its tools. In addition, throughout the book the
authors provide insight into the underlying issues of ORM and into the design
choices behind Hibernate. These insights give the reader a deep understanding
of the effective use of ORM as an enterprise technology.

 Hibernate in Action is the definitive guide to using Hibernate and to object/rela-
tional mapping in enterprise computing today.

 LINDA DEMICHIEL

 Lead Architect, Enterprise JavaBeans
 Sun Microsystems
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

 preface
Just because it is possible to push twigs along the ground with one’s nose does
not necessarily mean that that is the best way to collect firewood.

—Anthony Berglas

Today, many software developers work with Enterprise Information Systems (EIS).
This kind of application creates, manages, and stores structured information and
shares this information between many users in multiple physical locations.

 The storage of EIS data involves massive usage of SQL-based database manage-
ment systems. Every company we’ve met during our careers uses at least one SQL
database; most are completely dependent on relational database technology at
the core of their business.

 In the past five years, broad adoption of the Java programming language has
brought about the ascendancy of the object-oriented paradigm for software devel-
opment. Developers are now sold on the benefits of object orientation. However,
the vast majority of businesses are also tied to long-term investments in expensive
relational database systems. Not only are particular vendor products entrenched,
but existing legacy data must be made available to (and via) the shiny new object-
oriented web applications.

 However, the tabular representation of data in a relational system is fundamen-
tally different than the networks of objects used in object-oriented Java applica-
tions. This difference has led to the so-called object/relational paradigm mismatch.
Traditionally, the importance and cost of this mismatch have been underesti-
mated, and tools for solving the mismatch have been insufficient. Meanwhile, Java
developers blame relational technology for the mismatch; data professionals
xiii

blame object technology.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

xiv PREFACE
 Object/relational mapping (ORM) is the name given to automated solutions to the
mismatch problem. For developers weary of tedious data access code, the good
news is that ORM has come of age. Applications built with ORM middleware can be
expected to be cheaper, more performant, less vendor-specific, and more able to
cope with changes to the internal object or underlying SQL schema. The astonish-
ing thing is that these benefits are now available to Java developers for free.

 Gavin King began developing Hibernate in late 2001 when he found that the
popular persistence solution at the time—CMP Entity Beans—didn’t scale to non-
trivial applications with complex data models. Hibernate began life as an inde-
pendent, noncommercial open source project.

 The Hibernate team (including the authors) has learned ORM the hard way—
that is, by listening to user requests and implementing what was needed to satisfy
those requests. The result, Hibernate, is a practical solution, emphasizing devel-
oper productivity and technical leadership. Hibernate has been used by tens of
thousands of users and in many thousands of production applications.

 When the demands on their time became overwhelming, the Hibernate team
concluded that the future success of the project (and Gavin’s continued sanity)
demanded professional developers dedicated full-time to Hibernate. Hibernate
joined jboss.org in late 2003 and now has a commercial aspect; you can purchase
commercial support and training from JBoss Inc. But commercial training
shouldn’t be the only way to learn about Hibernate.

 It’s obvious that many, perhaps even most, Java projects benefit from the use of
an ORM solution like Hibernate—although this wasn’t obvious a couple of years
ago! As ORM technology becomes increasingly mainstream, product documenta-
tion such as Hibernate’s free user manual is no longer sufficient. We realized that
the Hibernate community and new Hibernate users needed a full-length book,
not only to learn about developing software with Hibernate, but also to under-
stand and appreciate the object/relational mismatch and the motivations behind
Hibernate’s design.

 The book you’re holding was an enormous effort that occupied most of our
spare time for more than a year. It was also the source of many heated disputes
and learning experiences. We hope this book is an excellent guide to Hibernate
(or, “the Hibernate bible,” as one of our reviewers put it) and also the first com-
prehensive documentation of the object/relational mismatch and ORM in gen-

eral. We hope you find it helpful and enjoy working with Hibernate.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

 acknowledgments
Writing (in fact, creating) a book wouldn’t be possible without help. We’d first
like to thank the Hibernate community for keeping us on our toes; without your
requests for the book, we probably would have given up early on.

 A book is only as good as its reviewers, and we had the best. J. B. Rainsberger,
Matt Scarpino, Ara Abrahamian, Mark Eagle, Glen Smith, Patrick Peak, Max
Rydahl Andersen, Peter Eisentraut, Matt Raible, and Michael A. Koziarski. Thanks
for your endless hours of reading our half-finished and raw manuscript. We’d like
to thank Emmanuel Bernard for his technical review and Nick Heudecker for his
help with the first chapters.

 Our team at Manning was invaluable. Clay Andres got this project started,
Jackie Carter stayed with us in good and bad times and taught us how to write.
Marjan Bace provided the necessary confidence that kept us going. Tiffany Taylor
and Liz Welch found all the many mistakes we made in grammar and style. Mary
Piergies organized the production of this book. Many thanks for your hard work.
Any others at Manning whom we’ve forgotten: You made it possible.
xv

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

about this book
We introduce the object/relational paradigm mismatch in this book and give you
a high-level overview of current solutions for this time-consuming problem. You’ll
learn how to use Hibernate as a persistence layer with a richly typed domain
object model in a single, continuing example application. This persistence layer
implementation covers all entity association, class inheritance, and special type
mapping strategies.

 We teach you how to tune the Hibernate object query and transaction system
for the best performance in highly concurrent multiuser applications. The flexible
Hibernate dual-layer caching system is also an important topic in this book. We dis-
cuss Hibernate integration in different scenarios and also show you typical archi-
tectural problems in two- and three-tiered Java database applications. If you have
to work with an existing SQL database, you’ll also be interested in Hibernate’s leg-
acy database integration features and the Hibernate development toolset.

Roadmap

Chapter 1 defines object persistence. We discuss why a relational database with a
SQL interface is the system for persistent data in today’s applications, and why
hand-coded Java persistence layers with JDBC and SQL code are time-consuming
and error-prone. After looking at alternative solutions for this problem, we intro-
duce object/relational mapping and talk about the advantages and downsides of
this approach.

 Chapter 2 gives an architectural overview of Hibernate and shows you the
most important application-programming interfaces. We demonstrate Hibernate
xvi

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

ABOUT THIS BOOK xvii
configuration in managed (and non-managed) J2EE and J2SE environments after
looking at a simple “Hello World” application.

 Chapter 3 introduces the example application and all kinds of entity and rela-
tionship mappings to a database schema, including uni- and bidirectional associa-
tions, class inheritance, and composition. You’ll learn how to write Hibernate
mapping files and how to design persistent classes.

 Chapter 4 teaches you the Hibernate interfaces for read and save operations;
we also show you how transitive persistence (persistence by reachability) works in
Hibernate. This chapter is focused on loading and storing objects in the most effi-
cient way.

 Chapter 5 discusses concurrent data access, with database and long-running
application transactions. We introduce the concepts of locking and versioning of
data. We also cover caching in general and the Hibernate caching system, which
are closely related to concurrent data access.

 Chapter 6 completes your understanding of Hibernate mapping techniques
with more advanced mapping concepts, such as custom user types, collections of
values, and mappings for one-to-one and many-to-many associations. We briefly
discuss Hibernate’s fully polymorphic behavior as well.

 Chapter 7 introduces the Hibernate Query Language (HQL) and other object-
retrieval methods such as the query by criteria (QBC) API, which is a typesafe way
to express an object query. We show you how to translate complex search dialogs
in your application to a query by example (QBE) query. You’ll get the full power of
Hibernate queries by combining these three features; we also show you how to use
direct SQL calls for the special cases and how to best optimize query performance.

 Chapter 8 describes some basic practices of Hibernate application architecture.
This includes handling the SessionFactory, the popular ThreadLocal Session pat-
tern, and encapsulation of the persistence layer functionality in data access objects
(DAO) and J2EE commands. We show you how to design long-running application
transactions and how to use the innovative detached object support in Hibernate.
We also talk about audit logging and legacy database schemas.

 Chapter 9 introduces several different development scenarios and tools that
may be used in each case. We show you the common technical pitfalls with each
approach and discuss the Hibernate toolset (hbm2ddl, hbm2java) and the inte-
gration with popular open source tools such as XDoclet and Middlegen.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

xviii ABOUT THIS BOOK
Who should read this book?

Readers of this book should have basic knowledge of object-oriented software
development and should have used this knowledge in practice. To understand the
application examples, you should be familiar with the Java programming lan-
guage and the Unified Modeling Language.

 Our primary target audience consists of Java developers who work with SQL-
based database systems. We’ll show you how to substantially increase your produc-
tivity by leveraging ORM.

 If you’re a database developer, the book could be part of your introduction to
object-oriented software development.

 If you’re a database administrator, you’ll be interested in how ORM affects per-
formance and how you can tune the performance of the SQL database manage-
ment system and persistence layer to achieve performance targets. Since data
access is the bottleneck in most Java applications, this book pays close attention to
performance issues. Many DBAs are understandably nervous about entrusting per-
formance to tool-generated SQL code; we seek to allay those fears and also to
highlight cases where applications should not use tool-managed data access. You
may be relieved to discover that we don’t claim that ORM is the best solution to
every problem.

Code conventions and downloads

This book provides copious examples, which include all the Hibernate applica-
tion artifacts: Java code, Hibernate configuration files, and XML mapping meta-
data files. Source code in listings or in text is in a fixed-width font like this to
separate it from ordinary text. Additionally, Java method names, component
parameters, object properties, and XML elements and attributes in text are also
presented using fixed-width font.

 Java, HTML, and XML can all be verbose. In many cases, the original source code
(available online) has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. In rare cases,
even this was not enough, and listings include line-continuation markers. Addi-
tionally, comments in the source code have been removed from the listings.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

ABOUT THIS BOOK xix
 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

 Hibernate is an open source project released under the Lesser GNU Public
License. Directions for downloading Hibernate, in source or binary form, are
available from the Hibernate web site: www.hibernate.org/.

 The source code for all CaveatEmptor examples in this book is available from
http://caveatemptor.hibernate.org/. The CaveatEmptor example application
code is available on this web site in different flavors: for example, for servlet and for
EJB deployment, with or without a presentation layer. However, only the standal-
one persistence layer source package is the recommended companion to this book.

About the authors

Christian Bauer is a member of the Hibernate developer team and is also respon-
sible for the Hibernate web site and documentation. Christian is interested in rela-
tional database systems and sound data management in Java applications. He
works as a developer and consultant for JBoss Inc. and lives in Frankfurt, Germany.

 Gavin King is the founder of the Hibernate project and lead developer. He is
an enthusiastic proponent of agile development and open source software. Gavin
is helping integrate ORM technology into the J2EE standard as a member of the
EJB 3 Expert Group. He is a developer and consultant for JBoss Inc., based in Mel-
bourne, Australia.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

about Hibernate3 and EJB 3
The world doesn’t stop turning when you finish writing a book, and getting the
book into production takes more time than you could believe. Therefore, some of
the information in any technical book becomes quickly outdated, especially when
new standards and product versions are already on the horizon.

 Hibernate3, an evolutionary new version of Hibernate, was in the early stages
of planning and design while this book was being written. By the time the book
hits the shelves, there may be an alpha release available. However, the informa-
tion in this book is valid for Hibernate3; in fact, we consider it to be an essential
reference even for the new version. We discuss fundamental concepts that will be
found in Hibernate3 and in most ORM solutions. Furthermore, Hibernate3 will
be mostly backward compatible with Hibernate 2.1. New features will be added, of
course, but you won’t have problems picking them up after reading this book.

 Inspired by the success of Hibernate, the EJB 3 Expert Group used several key
concepts and APIs from Hibernate in its redesign of entity beans. At the time of writ-
ing, only an early draft of the new EJB specification was available; hence we don’t
discuss it in this book. However, after reading Hibernate in Action, you’ll know all the
fundamentals that will let you quickly understand entity beans in EJB 3.

 For more up-to-date information, see the Hibernate road map: www.hiber-
nate.org/About/RoadMap.
xx

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

 author online
Purchase of Hibernate in Action includes free access to a private web forum where

d receive help
ubscribe to it,
vides informa-
of help is avail-
 to the source

here a mean-
d the authors
rticipation on
oluntary (and
 questions lest
xxi

you can make comments about the book, ask technical questions, an
from the author and from other users. To access the forum and s
point your web browser to www.manning.com/bauer. This page pro
tion on how to get on the forum once you are registered, what kind
able, and the rules of conduct on the forum. It also provides links
code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue w
ingful dialog between individual readers and between readers an
can take place. It is not a commitment to any specific amount of pa
the part of the authors, whose contribution to the AO remains v
unpaid). We suggest you try asking the authors some challenging
their interest stray!

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

about the title and cover
By combining introductions, overviews, and how-to examples, Manning’s In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want, just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.

About the cover illustration

The figure on the cover of Hibernate in Action is a peasant woman from a village in
Switzerland, “Paysanne de Schwatzenbourg en Suisse.” The illustration is taken
from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in
1796. Travel for pleasure was a relatively new phenomenon at the time and travel
guides such as this one were popular, introducing both the tourist as well as the
xxii

armchair traveler, to the inhabitants of other regions of France and abroad.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

ABOUT THE TITLE AND COVER xxiii
 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel book.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding
object/relational persistence
This chapter covers

■ Object persistence with SQL databases
■ The object/relational paradigm mismatch
■ Persistence layers in object-oriented

applications
■ Object/relational mapping basics
1

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

2 CHAPTER 1

Understanding object/relational persistence

The approach to managing persistent data has been a key design decision in every
software project we’ve worked on. Given that persistent data isn’t a new or unusual
requirement for Java applications, you’d expect to be able to make a simple choice
among similar, well-established persistence solutions. Think of web application
frameworks (Jakarta Struts versus WebWork), GUI component frameworks (Swing
versus SWT), or template engines (JSP versus Velocity). Each of the competing
solutions has advantages and disadvantages, but they at least share the same scope
and overall approach. Unfortunately, this isn’t yet the case with persistence tech-
nologies, where we see some wildly differing solutions to the same problem.

For several years, persistence has been a hot topic of debate in the Java com-
munity. Many developers don’t even agree on the scope of the problem. Is “per-
sistence” a problem that is already solved by relational technology and extensions
such as stored procedures, or is it a more pervasive problem that must be
addressed by special Java component models such as EJB entity beans? Should we
hand-code even the most primitive CRUD (create, read, update, delete) opera-
tions in SQL and JDBC, or should this work be automated? How do we achieve
portability if every database management system has its own SQL dialect? Should
we abandon SQL completely and adopt a new database technology, such as object
database systems? Debate continues, but recently a solution called object/relational
mapping (ORM) has met with increasing acceptance. Hibernate is an open source
ORM implementation.

Hibernate is an ambitious project that aims to be a complete solution to the
problem of managing persistent data in Java. It mediates the application’s interac-
tion with a relational database, leaving the developer free to concentrate on the
business problem at hand. Hibernate is an non-intrusive solution. By this we mean
you aren’t required to follow many Hibernate-specific rules and design patterns
when writing your business logic and persistent classes; thus, Hibernate integrates
smoothly with most new and existing applications and doesn’t require disruptive
changes to the rest of the application.

This book is about Hibernate. We’ll cover basic and advanced features and
describe some recommended ways to develop new applications using Hibernate.
Often, these recommendations won’t be specific to Hibernate—sometimes they
will be our ideas about the best ways to do things when working with persistent
data, explained in the context of Hibernate. Before we can get started with Hiber-
nate, however, you need to understand the core problems of object persistence
and object/relational mapping. This chapter explains why tools like Hibernate

are needed.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

What is persistence? 3

First, we define persistent data management in the context of object-oriented
applications and discuss the relationship of SQL, JDBC, and Java, the underlying
technologies and standards that Hibernate is built on. We then discuss the so-
called object/relational paradigm mismatch and the generic problems we encounter in
object-oriented software development with relational databases. As this list of prob-
lems grows, it becomes apparent that we need tools and patterns to minimize the
time we have to spend on the persistence-related code of our applications. After we
look at alternative tools and persistence mechanisms, you’ll see that ORM is the
best available solution for many scenarios. Our discussion of the advantages and
drawbacks of ORM gives you the full background to make the best decision when
picking a persistence solution for your own project.

The best way to learn isn’t necessarily linear. We understand that you probably
want to try Hibernate right away. If this is how you’d like to proceed, skip to
chapter 2, section 2.1, “Getting started,” where we jump in and start coding a
(small) Hibernate application. You’ll be able to understand chapter 2 without
reading this chapter, but we also recommend that you return here at some point
as you circle through the book. That way, you’ll be prepared and have all the back-
ground concepts you need for the rest of the material.

1.1 What is persistence?

Almost all applications require persistent data. Persistence is one of the funda-
mental concepts in application development. If an information system didn’t pre-
serve data entered by users when the host machine was powered off, the system
would be of little practical use. When we talk about persistence in Java, we’re nor-
mally talking about storing data in a relational database using SQL. We start by tak-
ing a brief look at the technology and how we use it with Java. Armed with that
information, we then continue our discussion of persistence and how it’s imple-
mented in object-oriented applications.

1.1.1 Relational databases

You, like most other developers, have probably worked with a relational database.
In fact, most of us use a relational database every day. Relational technology is a
known quantity. This alone is sufficient reason for many organizations to choose
it. But to say only this is to pay less respect than is due. Relational databases are so
entrenched not by accident but because they’re an incredibly flexible and robust
approach to data management.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

4 CHAPTER 1

Understanding object/relational persistence

A relational database management system isn’t specific to Java, and a relational
database isn’t specific to a particular application. Relational technology provides a
way of sharing data among different applications or among different technologies
that form part of the same application (the transactional engine and the reporting
engine, for example). Relational technology is a common denominator of many
disparate systems and technology platforms. Hence, the relational data model is
often the common enterprise-wide representation of business entities.

Relational database management systems have SQL-based application program-
ming interfaces; hence we call today’s relational database products SQL database
management systems or, when we’re talking about particular systems, SQL databases.

1.1.2 Understanding SQL

To use Hibernate effectively, a solid understanding of the relational model and
SQL is a prerequisite. You’ll need to use your knowledge of SQL to tune the per-
formance of your Hibernate application. Hibernate will automate many repetitive
coding tasks, but your knowledge of persistence technology must extend beyond
Hibernate itself if you want take advantage of the full power of modern SQL data-
bases. Remember that the underlying goal is robust, efficient management of per-
sistent data.

Let’s review some of the SQL terms used in this book. You use SQL as a data def-
inition language (DDL) to create a database schema with CREATE and ALTER state-
ments. After creating tables (and indexes, sequences, and so on), you use SQL as a
data manipulation language (DML). With DML, you execute SQL operations that
manipulate and retrieve data. The manipulation operations include insertion,
update, and deletion. You retrieve data by executing queries with restriction, projection,
and join operations (including the Cartesian product). For efficient reporting, you
use SQL to group, order, and aggregate data in arbitrary ways. You can even nest SQL
statements inside each other; this technique is called subselecting. You have proba-
bly used SQL for many years and are familiar with the basic operations and state-
ments written in this language. Still, we know from our own experience that SQL is
sometimes hard to remember and that some terms vary in usage. To understand
this book, we have to use the same terms and concepts; so, we advise you to read
appendix A if any of the terms we’ve mentioned are new or unclear.

SQL knowledge is mandatory for sound Java database application development.
If you need more material, get a copy of the excellent book SQL Tuning by Dan Tow
[Tow 2003]. Also read An Introduction to Database Systems [Date 2004] for the theory,

concepts, and ideals of (relational) database systems. Although the relational

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

What is persistence? 5

database is one part of ORM, the other part, of course, consists of the objects in
your Java application that need to be persisted to the database using SQL.

1.1.3 Using SQL in Java

When you work with an SQL database in a Java application, the Java code issues
SQL statements to the database via the Java DataBase Connectivity (JDBC) API. The
SQL itself might have been written by hand and embedded in the Java code, or it
might have been generated on the fly by Java code. You use the JDBC API to bind
arguments to query parameters, initiate execution of the query, scroll through the
query result table, retrieve values from the result set, and so on. These are low-
level data access tasks; as application developers, we’re more interested in the
business problem that requires this data access. It isn’t clear that we should be
concerning ourselves with such tedious, mechanical details.

What we’d really like to be able to do is write code that saves and retrieves com-
plex objects—the instances of our classes—to and from the database, relieving us
of this low-level drudgery.

Since the data access tasks are often so tedious, we have to ask: Are the relational
data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question immediately: Yes! There are many
reasons why SQL databases dominate the computing industry. Relational database
management systems are the only proven data management technology and are
almost always a requirement in any Java project.

However, for the last 15 years, developers have spoken of a paradigm mismatch.
This mismatch explains why so much effort is expended on persistence-related
concerns in every enterprise project. The paradigms referred to are object model-
ing and relational modeling, or perhaps object-oriented programming and SQL.
Let’s begin our exploration of the mismatch problem by asking what persistence
means in the context of object-oriented application development. First we’ll widen
the simplistic definition of persistence stated at the beginning of this section to a
broader, more mature understanding of what is involved in maintaining and using
persistent data.

1.1.4 Persistence in object-oriented applications

In an object-oriented application, persistence allows an object to outlive the pro-
cess that created it. The state of the object may be stored to disk and an object
with the same state re-created at some point in the future.
This application isn’t limited to single objects—entire graphs of interconnected
objects may be made persistent and later re-created in a new process. Most objects

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

6 CHAPTER 1

Understanding object/relational persistence

aren’t persistent; a transient object has a limited lifetime that is bounded by the life
of the process that instantiated it. Almost all Java applications contain a mix of per-
sistent and transient objects; hence we need a subsystem that manages our persis-
tent data.

Modern relational databases provide a structured representation of persistent
data, enabling sorting, searching, and aggregation of data. Database management
systems are responsible for managing concurrency and data integrity; they’re
responsible for sharing data between multiple users and multiple applications. A
database management system also provides data-level security. When we discuss
persistence in this book, we’re thinking of all these things:

■ Storage, organization, and retrieval of structured data

■ Concurrency and data integrity

■ Data sharing

In particular, we’re thinking of these problems in the context of an object-ori-
ented application that uses a domain model.

An application with a domain model doesn’t work directly with the tabular rep-
resentation of the business entities; the application has its own, object-oriented
model of the business entities. If the database has ITEM and BID tables, the Java
application defines Item and Bid classes.

Then, instead of directly working with the rows and columns of an SQL result
set, the business logic interacts with this object-oriented domain model and its
runtime realization as a graph of interconnected objects. The business logic is
never executed in the database (as an SQL stored procedure), it’s implemented in
Java. This allows business logic to make use of sophisticated object-oriented con-
cepts such as inheritance and polymorphism. For example, we could use well-
known design patterns such as Strategy, Mediator, and Composite [GOF 1995], all of
which depend on polymorphic method calls. Now a caveat: Not all Java applica-
tions are designed this way, nor should they be. Simple applications might be much
better off without a domain model. SQL and the JDBC API are perfectly serviceable
for dealing with pure tabular data, and the new JDBC RowSet (Sun JCP, JSR 114)
makes CRUD operations even easier. Working with a tabular representation of per-
sistent data is straightforward and well understood.

However, in the case of applications with nontrivial business logic, the domain
model helps to improve code reuse and maintainability significantly. We focus on
applications with a domain model in this book, since Hibernate and ORM in gen-

eral are most relevant to this kind of application.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The paradigm mismatch 7

If we consider SQL and relational databases again, we finally observe the mis-
match between the two paradigms.

SQL operations such as projection and join always result in a tabular representa-
tion of the resulting data. This is quite different than the graph of interconnected
objects used to execute the business logic in a Java application! These are funda-
mentally different models, not just different ways of visualizing the same model.

With this realization, we can begin to see the problems—some well understood
and some less well understood—that must be solved by an application that com-
bines both data representations: an object-oriented domain model and a persistent
relational model. Let’s take a closer look.

1.2 The paradigm mismatch

The paradigm mismatch can be broken
down into several parts, which we’ll exam-
ine one at a time. Let’s start our explora-
tion with a simple example that is problem
free. Then, as we build on it, you’ll begin
to see the mismatch appear.

Suppose you have to design and implement an online e-commerce application. In
this application, you’d need a class to represent information about a user of the
system, and another class to represent information about the user’s billing details,
as shown in figure 1.1.

Looking at this diagram, you see that a User has many BillingDetails. You can
navigate the relationship between the classes in both directions. To begin with, the
classes representing these entities might be extremely simple:

public class User {
 private String userName;
 private String name;
 private String address;
 private Set billingDetails;

 // accessor methods (get/set pairs), business methods, etc.
 ...
}

public class BillingDetails {
 private String accountNumber;
 private String accountName;
 private String accountType;
 private User user;

BillingDetailsUser 1..*

Figure 1.1 A simple UML class diagram of the
user and billing details entities
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

8 CHAPTER 1

Understanding object/relational persistence

 //methods, get/set pairs...
 ...
}

Note that we’re only interested in the state of the entities with regard to persis-
tence, so we’ve omitted the implementation of property accessors and business
methods (such as getUserName() or billAuction()). It’s quite easy to come up
with a good SQL schema design for this case:

create table USER (
 USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
 NAME VARCHAR(50) NOT NULL,
 ADDRESS VARCHAR(100)
)

create table BILLING_DETAILS (
 ACCOUNT_NUMBER VARCHAR(10) NOT NULL PRIMARY Key,
 ACCOUNT_NAME VARCHAR(50) NOT NULL,
 ACCOUNT_TYPE VARCHAR(2) NOT NULL,
 USERNAME VARCHAR(15) FOREIGN KEY REFERENCES USER
)

The relationship between the two entities is represented as the foreign key,
USERNAME, in BILLING_DETAILS. For this simple object model, the object/relational
mismatch is barely in evidence; it’s straightforward to write JDBC code to insert,
update, and delete information about user and billing details.

Now, let’s see what happens when we consider something a little more realistic.
The paradigm mismatch will be visible when we add more entities and entity rela-
tionships to our application.

The most glaringly obvious problem with our current implementation is that
we’ve modeled an address as a simple String value. In most systems, it’s necessary
to store street, city, state, country, and ZIP code information separately. Of
course, we could add these properties directly to the User class, but since it’s
highly likely that other classes in the system will also carry address information, it
makes more sense to create a separate Address class. The updated object model is
shown in figure 1.2.

Should we also add an ADDRESS table? Not necessarily. It’s common to keep
address information in the USER table, in individual columns. This design is likely
to perform better, since we don’t require a table join to retrieve the user and
address in a single query. The nicest solution might even be to create a user-defined

BillingDetailsUser 1..*Address
Figure 1.2 The User has an Address.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The paradigm mismatch 9

SQL data type to represent addresses and to use a single column of that new type
in the USER table instead of several new columns.

Basically, we have the choice of adding either several columns or a single col-
umn (of a new SQL data type). This is clearly a problem of granularity.

1.2.1 The problem of granularity

Granularity refers to the relative size of the objects you’re working with. When
we’re talking about Java objects and database tables, the granularity problem
means persisting objects that can have various kinds of granularity to tables and
columns that are inherently limited in granularity.

Let’s return to our example. Adding a new data type to store Address Java
objects in a single column to our database catalog sounds like the best approach.
After all, a new Address type (class) in Java and a new ADDRESS SQL data type should
guarantee interoperability. However, you’ll find various problems if you check the
support for user-defined column types (UDT) in today’s SQL database manage-
ment systems.

UDT support is one of a number of so-called object-relational extensions to tradi-
tional SQL. Unfortunately, UDT support is a somewhat obscure feature of most SQL
database management systems and certainly isn’t portable between different sys-
tems. The SQL standard supports user-defined data types, but very poorly. For this
reason and (whatever) other reasons, use of UDTs isn’t common practice in the
industry at this time—and it’s unlikely that you’ll encounter a legacy schema that
makes extensive use of UDTs. We therefore can’t store objects of our new Address
class in a single new column of an equivalent user-defined SQL data type. Our solu-
tion for this problem has several columns, of vendor-defined SQL types (such as
boolean, numeric, and string data types). Considering the granularity of our tables
again, the USER table is usually defined as follows:

create table USER (
 USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
 NAME VARCHAR(50) NOT NULL,
 ADDRESS_STREET VARCHAR(50),
 ADDRESS_CITY VARCHAR(15),
 ADDRESS_STATE VARCHAR(15),
 ADDRESS_ZIPCODE VARCHAR(5),
 ADDRESS_COUNTRY VARCHAR(15)
)

This leads to the following observation: Classes in our domain object model come
in a range of different levels of granularity—from coarse-grained entity classes like
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

10 CHAPTER 1

Understanding object/relational persistence

User, to finer grained classes like Address, right down to simple String-valued
properties such as zipcode.

In contrast, just two levels of granularity are visible at the level of the database:
tables such as USER, along with scalar columns such as ADDRESS_ZIPCODE. This obvi-
ously isn’t as flexible as our Java type system. Many simple persistence mechanisms
fail to recognize this mismatch and so end up forcing the less flexible representa-
tion upon the object model. We’ve seen countless User classes with properties
named zipcode!

It turns out that the granularity problem isn’t especially difficult to solve.
Indeed, we probably wouldn’t even list it, were it not for the fact that it’s visible in
so many existing systems. We describe the solution to this problem in chapter 3,
section 3.5, “Fine-grained object models.”

A much more difficult and interesting problem arises when we consider domain
object models that use inheritance, a feature of object-oriented design we might use
to bill the users of our e-commerce application in new and interesting ways.

1.2.2 The problem of subtypes

In Java, we implement inheritance using super- and subclasses. To illustrate why
this can present a mismatch problem, let’s continue to build our example. Let’s
add to our e-commerce application so that we now can accept not only bank
account billing, but also credit and debit cards. We therefore have several meth-
ods to bill a user account. The most natural way to reflect this change in our
object model is to use inheritance for the BillingDetails class.

We might have an abstract BillingDetails superclass along with several con-
crete subclasses: CreditCard, DirectDebit, Cheque, and so on. Each of these sub-
classes will define slightly different data (and completely different functionality
that acts upon that data). The UML class diagram in figure 1.3 illustrates this
object model.

We notice immediately that SQL provides no direct support for inheritance. We
can’t declare that a CREDIT_CARD_DETAILS table is a subtype of BILLING_DETAILS by
writing, say, CREATE TABLE CREDIT_CARD_DETAILS EXTENDS BILLING_DETAILS (...).

Figure 1.3
Using inheritance for different

billing strategies

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The paradigm mismatch 11

In chapter 3, section 3.6, “Mapping class inheritance,” we discuss how object/
relational mapping solutions such as Hibernate solve the problem of persisting a
class hierarchy to a database table or tables. This problem is now quite well under-
stood in the community, and most solutions support approximately the same func-
tionality. But we aren’t quite finished with inheritance—as soon as we introduce
inheritance into the object model, we have the possibility of polymorphism.

The User class has an association to the BillingDetails superclass. This is a poly-
morphic association. At runtime, a User object might be associated with an instance
of any of the subclasses of BillingDetails. Similarly, we’d like to be able to write
queries that refer to the BillingDetails class and have the query return instances
of its subclasses. This feature is called polymorphic queries.

Since SQL databases don’t provide a notion of inheritance, it’s hardly surprising
that they also lack an obvious way to represent a polymorphic association. A stan-
dard foreign key constraint refers to exactly one table; it isn’t straightforward to
define a foreign key that refers to multiple tables. We might explain this by saying
that Java (and other object-oriented languages) is less strictly typed than SQL. For-
tunately, two of the inheritance mapping solutions we show in chapter 3 are
designed to accommodate the representation of polymorphic associations and effi-
cient execution of polymorphic queries.

So, the mismatch of subtypes is one in which the inheritance structure in your
Java model must be persisted in an SQL database that doesn’t offer an inheritance
strategy. The next aspect of the mismatch problem is the issue of object identity.
You probably noticed that we defined USERNAME as the primary key of our USER
table. Was that a good choice? Not really, as you’ll see next.

1.2.3 The problem of identity

Although the problem of object identity might not be obvious at first, we’ll encoun-
ter it often in our growing and expanding example e-commerce system. This
problem can be seen when we consider two objects (for example, two Users) and
check if they’re identical. There are three ways to tackle this problem, two in the
Java world and one in our SQL database. As expected, they work together only
with some help.

Java objects define two different notions of sameness:

■ Object identity (roughly equivalent to memory location, checked with a==b)

■ Equality as determined by the implementation of the equals() method
(also called equality by value)
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

12 CHAPTER 1

Understanding object/relational persistence

On the other hand, the identity of a database row is expressed as the primary key
value. As you’ll see in section 3.4, “Understanding object identity,” neither
equals() nor == is naturally equivalent to the primary key value. It’s common for
several (nonidentical) objects to simultaneously represent the same row of the
database. Furthermore, some subtle difficulties are involved in implementing
equals() correctly for a persistent class.

Let’s discuss another problem related to database identity with an example. In
our table definition for USER, we’ve used USERNAME as a primary key. Unfortunately,
this decision makes it difficult to change a username: We’d need to update not only
the USERNAME column in USER, but also the foreign key column in BILLING_DETAILS.
So, later in the book, we’ll recommend that you use surrogate keys wherever possible.
A surrogate key is a primary key column with no meaning to the user. For example,
we might change our table definitions to look like this:

create table USER (
 USER_ID BIGINT NOT NULL PRIMARY KEY,
 USERNAME VARCHAR(15) NOT NULL UNIQUE,
 NAME VARCHAR(50) NOT NULL,
 ...
)

create table BILLING_DETAILS (
 BILLING_DETAILS_ID BIGINT NOT NULL PRIMARY KEY,
 ACCOUNT_NUMBER VARCHAR(10) NOT NULL UNIQUE,
 ACCOUNT_NAME VARCHAR(50) NOT NULL,
 ACCOUNT_TYPE VARCHAR(2) NOT NULL,
 USER_ID BIGINT FOREIGN KEY REFERENCES USER
)

The USER_ID and BILLING_DETAILS_ID columns contain system-generated values.
These columns were introduced purely for the benefit of the relational data model.
How (if at all) should they be represented in the object model? We’ll discuss this
question in section 3.4 and find a solution with object/relational mapping.

In the context of persistence, identity is closely related to how the system han-
dles caching and transactions. Different persistence solutions have chosen various
strategies, and this has been an area of confusion. We cover all these interesting
topics—and show how they’re related—in chapter 5.

The skeleton e-commerce application we’ve designed and implemented has
served our purpose well. We’ve identified the mismatch problems with mapping
granularity, subtypes, and object identity. We’re almost ready to move on to other
parts of the application. But first, we need to discuss the important concept of asso-

ciations—that is, how the relationships between our classes are mapped and han-
dled. Is the foreign key in the database all we need?

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The paradigm mismatch 13

1.2.4 Problems relating to associations

In our object model, associations represent the relationships between entities.
You remember that the User, Address, and BillingDetails classes are all associ-
ated. Unlike Address, BillingDetails stands on its own. BillingDetails objects
are stored in their own table. Association mapping and the management of entity
associations are central concepts of any object persistence solution.

Object-oriented languages represent associations using object references and col-
lections of object references. In the relational world, an association is represented
as a foreign key column, with copies of key values in several tables. There are subtle
differences between the two representations.

Object references are inherently directional; the association is from one object
to the other. If an association between objects should be navigable in both direc-
tions, you must define the association twice, once in each of the associated classes.
You’ve already seen this in our object model classes:

public class User {
 private Set billingDetails;
 ...
}

public class BillingDetails {
 private User user;
 ...
}

On the other hand, foreign key associations aren’t by nature directional. In fact,
navigation has no meaning for a relational data model, because you can create
arbitrary data associations with table joins and projection.

Actually, it isn’t possible to determine the multiplicity of a unidirectional associ-
ation by looking only at the Java classes. Java associations may have many-to-many
multiplicity. For example, our object model might have looked like this:

public class User {
 private Set billingDetails;
 ...
}

public class BillingDetails {
 private Set users;
 ...
}

Table associations on the other hand, are always one-to-many or one-to-one. You can
see the multiplicity immediately by looking at the foreign key definition. The fol-

lowing is a one-to-many association (or, if read in that direction, a many-to-one):

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

14 CHAPTER 1

Understanding object/relational persistence

USER_ID BIGINT FOREIGN KEY REFERENCES USER

These are one-to-one associations:

USER_ID BIGINT UNIQUE FOREIGN KEY REFERENCES USER
BILLING_DETAILS_ID BIGINT PRIMARY KEY FOREIGN KEY REFERENCES USER

If you wish to represent a many-to-many association in a relational database, you
must introduce a new table, called a link table. This table doesn’t appear anywhere
in the object model. For our example, if we consider the relationship between a
user and the user’s billing information to be many-to-many, the link table is
defined as follows:

CREATE TABLE USER_BILLING_DETAILS (
 USER_ID BIGINT FOREIGN KEY REFERENCES USER,
 BILLING_DETAILS_ID BIGINT FOREIGN KEY REFERENCES BILLING_DETAILS
 PRIMARY KEY (USER_ID, BILLING_DETAILS_ID)
)

We’ll discuss association mappings in great detail in chapters 3 and 6.
So far, the issues we’ve considered are mainly structural. We can see them by

considering a purely static view of the system. Perhaps the most difficult problem
in object persistence is a dynamic. It concerns associations, and we’ve already
hinted at it when we drew a distinction between object graph navigation and table joins
in section 1.1.4, “Persistence in object-oriented applications.” Let’s explore this sig-
nificant mismatch problem in more depth.

1.2.5 The problem of object graph navigation

There is a fundamental difference in the way you access objects in Java and in a
relational database. In Java, when you access the billing information of a user, you
call aUser.getBillingDetails().getAccountNumber(). This is the most natural
way to access object-oriented data and is often described as walking the object graph.
You navigate from one object to another, following associations between instances.
Unfortunately, this isn’t an efficient way to retrieve data from an SQL database.

The single most important thing to do to improve performance of data access
code is to minimize the number of requests to the database. The most obvious way to do
this is to minimize the number of SQL queries. (Other ways include using stored
procedures or the JDBC batch API.)

Therefore, efficient access to relational data using SQL usually requires the use
of joins between the tables of interest. The number of tables included in the join
determines the depth of the object graph you can navigate. For example, if we

need to retrieve a User and aren’t interested in the user’s BillingDetails, we use
this simple query:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The paradigm mismatch 15

select * from USER u where u.USER_ID = 123

On the other hand, if we need to retrieve the same User and then subsequently
visit each of the associated BillingDetails instances, we use a different query:

select *
from USER u
left outer join BILLING_DETAILS bd on bd.USER_ID = u.USER_ID
where u.USER_ID = 123

As you can see, we need to know what portion of the object graph we plan to
access when we retrieve the initial User, before we start navigating the object graph!

On the other hand, any object persistence solution provides functionality for
fetching the data of associated objects only when the object is first accessed. How-
ever, this piecemeal style of data access is fundamentally inefficient in the context
of a relational database, because it requires execution of one select statement for
each node of the object graph. This is the dreaded n+1 selects problem.

This mismatch in the way we access objects in Java and in a relational database
is perhaps the single most common source of performance problems in Java appli-
cations. Yet, although we’ve been blessed with innumerable books and magazine
articles advising us to use StringBuffer for string concatenation, it seems impossi-
ble to find any advice about strategies for avoiding the n+1 selects problem. Fortu-
nately, Hibernate provides sophisticated features for efficiently fetching graphs of
objects from the database, transparently to the application accessing the graph. We
discuss these features in chapters 4 and 7.

We now have a quite elaborate list of object/relational mismatch problems,
and it will be costly to find solutions, as you might know from experience. This
cost is often underestimated, and we think this is a major reason for many failed
software projects.

1.2.6 The cost of the mismatch

The overall solution for the list of mismatch problems can require a significant
outlay of time and effort. In our experience, the main purpose of up to 30 per-
cent of the Java application code written is to handle the tedious SQL/JDBC and
the manual bridging of the object/relational paradigm mismatch. Despite all this
effort, the end result still doesn’t feel quite right. We’ve seen projects nearly sink
due to the complexity and inflexibility of their database abstraction layers.

One of the major costs is in the area of modeling. The relational and object mod-
els must both encompass the same business entities. But an object-oriented purist

will model these entities in a very different way than an experienced relational data

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

16 CHAPTER 1

Understanding object/relational persistence

modeler. The usual solution to this problem is to bend and twist the object model
until it matches the underlying relational technology.

This can be done successfully, but only at the cost of losing some of the advan-
tages of object orientation. Keep in mind that relational modeling is underpinned
by relational theory. Object orientation has no such rigorous mathematical defini-
tion or body of theoretical work. So, we can’t look to mathematics to explain how
we should bridge the gap between the two paradigms—there is no elegant trans-
formation waiting to be discovered. (Doing away with Java and SQL and starting
from scratch isn’t considered elegant.)

The domain modeling mismatch problem isn’t the only source of the inflexibil-
ity and lost productivity that lead to higher costs. A further cause is the JDBC API
itself. JDBC and SQL provide a statement- (that is, command-) oriented approach to
moving data to and from an SQL database. A structural relationship must be spec-
ified at least three times (Insert, Update, Select), adding to the time required for
design and implementation. The unique dialect for every SQL database doesn’t
improve the situation.

Recently, it has been fashionable to regard architectural or pattern-based mod-
els as a partial solution to the mismatch problem. Hence, we have the entity bean
component model, the data access object (DAO) pattern, and other practices to
implement data access. These approaches leave most or all of the problems listed
earlier to the application developer. To round out your understanding of object
persistence, we need to discuss application architecture and the role of a persistence
layer in typical application design.

1.3 Persistence layers and alternatives

In a medium- or large-sized application, it usually makes sense to organize classes
by concern. Persistence is one concern. Other concerns are presentation, work-
flow, and business logic. There are also the so-called “cross-cutting” concerns, which
may be implemented generically—by framework code, for example. Typical cross-
cutting concerns include logging, authorization, and transaction demarcation.

A typical object-oriented architecture comprises layers that represent the
concerns. It’s normal, and certainly best practice, to group all classes and
components responsible for persistence into a separate persistence layer in a layered
system architecture.

In this section, we first look at the layers of this type of architecture and why we
use them. After that, we focus on the layer we’re most interested in—the persis-

tence layer—and some of the ways it can be implemented.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Persistence layers and alternatives 17

1.3.1 Layered architecture

A layered architecture defines interfaces between code that implements the various
concerns, allowing a change to the way one concern is implemented without sig-
nificant disruption to code in the other layers. Layering also determines the kinds
of interlayer dependencies that occur. The rules are as follows:

■ Layers communicate top to bottom. A layer is dependent only on the layer
directly below it.

■ Each layer is unaware of any other layers except for the layer just below it.

Different applications group concerns differently, so they define different layers.
A typical, proven, high-level application architecture uses three layers, one each
for presentation, business logic, and persistence, as shown in figure 1.4.

Let’s take a closer look at the layers and elements in the diagram:

■ Presentation layer—The user interface logic is topmost. Code responsible for
the presentation and control of page and screen navigation forms the pre-
sentation layer.

■ Business layer—The exact form of the next layer varies widely between appli-
cations. It’s generally agreed, however, that this business layer is responsible
for implementing any business rules or system requirements that would be
understood by users as part of the problem domain. In some systems, this
layer has its own internal representation of the business domain entities. In
others, it reuses the model defined by the persistence layer. We revisit this
issue in chapter 3.

Presentation Layer

Business Layer

Persistence Layer

Utility
and

Helper
Classes

Database
Figure 1.4
A persistence layer is the basis in a

layered architecture.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

18 CHAPTER 1

Understanding object/relational persistence

■ Persistence layer—The persistence layer is a group of classes and components
responsible for data storage to, and retrieval from, one or more data stores.
This layer necessarily includes a model of the business domain entities
(even if it’s only a metadata model).

■ Database—The database exists outside the Java application. It’s the actual,
persistent representation of the system state. If an SQL database is used, the
database includes the relational schema and possibly stored procedures.

■ Helper/utility classes—Every application has a set of infrastructural helper or
utility classes that are used in every layer of the application (for example,
Exception classes for error handling). These infrastructural elements don’t
form a layer, since they don’t obey the rules for interlayer dependency in a
layered architecture.

Let’s now take a brief look at the various ways the persistence layer can be imple-
mented by Java applications. Don’t worry—we’ll get to ORM and Hibernate soon.
There is much to be learned by looking at other approaches.

1.3.2 Hand-coding a persistence layer with SQL/JDBC

The most common approach to Java persistence is for application programmers
to work directly with SQL and JDBC. After all, developers are familiar with rela-
tional database management systems, understand SQL, and know how to work
with tables and foreign keys. Moreover, they can always use the well-known and
widely used DAO design pattern to hide complex JDBC code and nonportable SQL
from the business logic.

The DAO pattern is a good one—so good that we recommend its use even with
ORM (see chapter 8). However, the work involved in manually coding persistence
for each domain class is considerable, particularly when multiple SQL dialects are
supported. This work usually ends up consuming a large portion of the develop-
ment effort. Furthermore, when requirements change, a hand-coded solution
always requires more attention and maintenance effort.

So why not implement a simple ORM framework to fit the specific requirements
of your project? The result of such an effort could even be reused in future
projects. Many developers have taken this approach; numerous homegrown
object/relational persistence layers are in production systems today. However, we
don’t recommend this approach. Excellent solutions already exist, not only the
(mostly expensive) tools sold by commercial vendors but also open source projects

with free licenses. We’re certain you’ll be able to find a solution that meets your

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Persistence layers and alternatives 19

requirements, both business and technical. It’s likely that such a solution will do a
great deal more, and do it better, than a solution you could build in a limited time.

Development of a reasonably full-featured ORM may take many developers
months. For example, Hibernate is 43,000 lines of code (some of which is much
more difficult than typical application code), along with 12,000 lines of unit test
code. This might be more than your application. A great many details can easily be
overlooked—as both the authors know from experience! Even if an existing tool
doesn’t fully implement two or three of your more exotic requirements, it’s still
probably not worth creating your own. Any ORM will handle the tedious common
cases—the ones that really kill productivity. It’s okay that you might need to hand-
code certain special cases; few applications are composed primarily of special cases.

Don’t fall for the “Not Invented Here” syndrome and start your own object/rela-
tional mapping effort just to avoid the learning curve associated with third-party
software. Even if you decide that all this ORM stuff is crazy, and you want to work
as close to the SQL database as possible, other persistence frameworks exist that
don’t implement full ORM. For example, the iBATIS database layer is an open
source persistence layer that handles some of the more tedious JDBC code while
letting developers handcraft the SQL.

1.3.3 Using serialization

Java has a built-in persistence mechanism: Serialization provides the ability to write
a graph of objects (the state of the application) to a byte-stream, which may then
be persisted to a file or database. Serialization is also used by Java’s Remote
Method Invocation (RMI) to achieve pass-by value semantics for complex objects.
Another usage of serialization is to replicate application state across nodes in a
cluster of machines.

Why not use serialization for the persistence layer? Unfortunately, a serialized
graph of interconnected objects can only be accessed as a whole; it’s impossible to
retrieve any data from the stream without deserializing the entire stream. Thus, the
resulting byte-stream must be considered unsuitable for arbitrary search or aggre-
gation. It isn’t even possible to access or update a single object or subgraph inde-
pendently. Loading and overwriting an entire object graph in each transaction is
no option for systems designed to support high concurrency.

Clearly, given current technology, serialization is inadequate as a persistence
mechanism for high concurrency web and enterprise applications. It has a partic-
ular niche as a suitable persistence mechanism for desktop applications.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

20 CHAPTER 1

Understanding object/relational persistence

1.3.4 Considering EJB entity beans

In recent years, Enterprise JavaBeans (EJBs) have been a recommended way of
persisting data. If you’ve been working in the field of Java enterprise applications,
you’ve probably worked with EJBs and entity beans in particular. If you haven’t,
don’t worry—entity beans are rapidly declining in popularity. (Many of the devel-
oper concerns will be addressed in the new EJB 3.0 specification, however.)

Entity beans (in the current EJB 2.1 specification) are interesting because, in
contrast to the other solutions mentioned here, they were created entirely by
committee. The other solutions (the DAO pattern, serialization, and ORM) were
distilled from many years of experience; they represent approaches that have
stood the test of time. Unsurprisingly, perhaps, EJB 2.1 entity beans have been a
disaster in practice. Design flaws in the EJB specification prevent bean-managed
persistence (BMP) entity beans from performing efficiently. A marginally more
acceptable solution is container-managed persistence (CMP), at least since some glar-
ing deficiencies of the EJB 1.1 specification were rectified.

Nevertheless, CMP doesn’t represent a solution to the object/relational mis-
match. Here are six reasons why:

■ CMP beans are defined in one-to-one correspondence to the tables of the
relational model. Thus, they’re too coarse grained; they may not take full
advantage of Java’s rich typing. In a sense, CMP forces your domain model
into first normal form.

■ On the other hand, CMP beans are also too fine grained to realize the stated
goal of EJB: the definition of reusable software components. A reusable
component should be a very coarse-grained object, with an external inter-
face that is stable in the face of small changes to the database schema. (Yes,
we really did just claim that CMP entity beans are both too fine grained and
too coarse grained!)

■ Although EJBs may take advantage of implementation inheritance, entity
beans don’t support polymorphic associations and queries, one of the defin-
ing features of “true” ORM.

■ Entity beans, despite the stated goal of the EJB specification, aren’t portable
in practice. Capabilities of CMP engines vary widely between vendors, and
the mapping metadata is highly vendor-specific. Some projects have chosen
Hibernate for the simple reason that Hibernate applications are much
more portable between application servers.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Persistence layers and alternatives 21

■ Entity beans aren’t serializable. We find that we must define additional data
transfer objects (DTOs, also called value objects) when we need to transport
data to a remote client tier. The use of fine-grained method calls from the
client to a remote entity bean instance is not scalable; DTOs provide a way of
batching remote data access. The DTO pattern results in the growth of par-
allel class hierarchies, where each entity of the domain model is repre-
sented as both an entity bean and a DTO.

■ EJB is an intrusive model; it mandates an unnatural Java style and makes
reuse of code outside a specific container extremely difficult. This is a huge
barrier to unit test driven development (TDD). It even causes problems in
applications that require batch processing or other offline functions.

We won’t spend more time discussing the pros and cons of EJB 2.1 entity beans.
After looking at their persistence capabilities, we’ve come to the conclusion that
they aren’t suitable for a full object mapping. We’ll see what the new EJB 3.0 spec-
ification can improve. Let’s turn to another object persistence solution that
deserves some attention.

1.3.5 Object-oriented database systems

Since we work with objects in Java, it would be ideal if there were a way to store
those objects in a database without having to bend and twist the object model at
all. In the mid-1990s, new object-oriented database systems gained attention.

An object-oriented database management system (OODBMS) is more like an
extension to the application environment than an external data store. An OODBMS
usually features a multitiered implementation, with the backend data store, object
cache, and client application coupled tightly together and interacting via a propri-
etary network protocol.

Object-oriented database development begins with the top-down definition of
host language bindings that add persistence capabilities to the programming lan-
guage. Hence, object databases offer seamless integration into the object-oriented
application environment. This is different from the model used by today’s rela-
tional databases, where interaction with the database occurs via an intermediate
language (SQL).

Analogously to ANSI SQL, the standard query interface for relational databases,
there is a standard for object database products. The Object Data Management
Group (ODMG) specification defines an API, a query language, a metadata lan-

guage, and host language bindings for C++, SmallTalk, and Java. Most object-

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

22 CHAPTER 1

Understanding object/relational persistence

oriented database systems provide some level of support for the ODMG standard,
but to the best of our knowledge, there is no complete implementation.
Furthermore, a number of years after its release, and even in version 3.0, the spec-
ification feels immature and lacks a number of useful features, especially in a Java-
based environment. The ODMG is also no longer active. More recently, the Java
Data Objects (JDO) specification (published in April 2002) opened up new possi-
bilities. JDO was driven by members of the object-oriented database community
and is now being adopted by object-oriented database products as the primary API,
often in addition to the existing ODMG support. It remains to be seen if this new
effort will see object-oriented databases penetrate beyond CAD/CAM (computer-
aided design/modeling), scientific computing, and other niche markets.

We won’t bother looking too closely into why object-oriented database technol-
ogy hasn’t been more popular—we’ll simply observe that object databases haven’t
been widely adopted and that it doesn’t appear likely that they will be in the near
future. We’re confident that the overwhelming majority of developers will have far
more opportunity to work with relational technology, given the current political
realities (predefined deployment environments).

1.3.6 Other options

Of course, there are other kinds of persistence layers. XML persistence is a varia-
tion on the serialization theme; this approach addresses some of the limitations
of byte-stream serialization by allowing tools to access the data structure easily
(but is itself subject to an object/hierarchical impedance mismatch). Further-
more, there is no additional benefit from the XML, because it’s just another text
file format. You can use stored procedures (even write them in Java using SQLJ)
and move the problem into the database tier. We’re sure there are plenty of
other examples, but none of them are likely to become popular in the immedi-
ate future.

Political constraints (long-term investments in SQL databases) and the require-
ment for access to valuable legacy data call for a different approach. ORM may be
the most practical solution to our problems.

1.4 Object/relational mapping

Now that we’ve looked at the alternative techniques for object persistence, it’s
time to introduce the solution we feel is the best, and the one we use with Hiber-
nate: ORM. Despite its long history (the first research papers were published in

the late 1980s), the terms for ORM used by developers vary. Some call it object

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Object/relational mapping 23

relational mapping, others prefer the simple object mapping. We exclusively use the
term object/relational mapping and its acronym, ORM. The slash stresses the mis-
match problem that occurs when the two worlds collide.

In this section, we first look at what ORM is. Then we enumerate the problems
that a good ORM solution needs to solve. Finally, we discuss the general benefits
that ORM provides and why we recommend this solution.

1.4.1 What is ORM?

In a nutshell, object/relational mapping is the automated (and transparent) per-
sistence of objects in a Java application to the tables in a relational database,
using metadata that describes the mapping between the objects and the database.
ORM, in essence, works by (reversibly) transforming data from one representa-
tion to another.

This implies certain performance penalties. However, if ORM is implemented as
middleware, there are many opportunities for optimization that wouldn’t exist for
a hand-coded persistence layer. A further overhead (at development time) is the
provision and management of metadata that governs the transformation. But
again, the cost is less than equivalent costs involved in maintaining a hand-coded
solution. And even ODMG-compliant object databases require significant class-
level metadata.

FAQ Isn’t ORM a Visio plugin? The acronym ORM can also mean object role mod-
eling, and this term was invented before object/relational mapping
became relevant. It describes a method for information analysis, used in
database modeling, and is primarily supported by Microsoft Visio, a
graphical modeling tool. Database specialists use it as a replacement or as
an addition to the more popular entity-relationship modeling. However, if
you talk to Java developers about ORM, it’s usually in the context of
object/relational mapping.

An ORM solution consists of the following four pieces:

■ An API for performing basic CRUD operations on objects of persistent
classes

■ A language or API for specifying queries that refer to classes and properties
of classes

■ A facility for specifying mapping metadata

■ A technique for the ORM implementation to interact with transactional

objects to perform dirty checking, lazy association fetching, and other opti-
mization functions

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

24 CHAPTER 1

Understanding object/relational persistence

We’re using the term ORM to include any persistence layer where SQL is autoge-
nerated from a metadata-based description. We aren’t including persistence layers
where the object/relational mapping problem is solved manually by developers
hand-coding SQL and using JDBC. With ORM, the application interacts with the
ORM APIs and the domain model classes and is abstracted from the underlying
SQL/JDBC. Depending on the features or the particular implementation, the
ORM runtime may also take on responsibility for issues such as optimistic locking
and caching, relieving the application of these concerns entirely.

Let’s look at the various ways ORM can be implemented. Mark Fussel
[Fussel 1997], a researcher in the field of ORM, defined the following four levels of
ORM quality.

Pure relational
The whole application, including the user interface, is designed around the rela-
tional model and SQL-based relational operations. This approach, despite its defi-
ciencies for large systems, can be an excellent solution for simple applications
where a low level of code reuse is tolerable. Direct SQL can be fine-tuned in every
aspect, but the drawbacks, such as lack of portability and maintainability, are sig-
nificant, especially in the long run. Applications in this category often make heavy
use of stored procedures, shifting some of the work out of the business layer and
into the database.

Light object mapping
Entities are represented as classes that are mapped manually to the relational
tables. Hand-coded SQL/JDBC is hidden from the business logic using well-
known design patterns. This approach is extremely widespread and is successful
for applications with a small number of entities, or applications with generic,
metadata-driven data models. Stored procedures might have a place in this kind
of application.

Medium object mapping
The application is designed around an object model. SQL is generated at build
time using a code generation tool, or at runtime by framework code. Associations
between objects are supported by the persistence mechanism, and queries may be
specified using an object-oriented expression language. Objects are cached by the
persistence layer. A great many ORM products and homegrown persistence layers
support at least this level of functionality. It’s well suited to medium-sized applica-

tions with some complex transactions, particularly when portability between

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Object/relational mapping 25

different database products is important. These applications usually don’t use
stored procedures.

Full object mapping
Full object mapping supports sophisticated object modeling: composition, inher-
itance, polymorphism, and “persistence by reachability.” The persistence layer
implements transparent persistence; persistent classes do not inherit any special
base class or have to implement a special interface. Efficient fetching strategies
(lazy and eager fetching) and caching strategies are implemented transparently to
the application. This level of functionality can hardly be achieved by a homegrown
persistence layer—it’s equivalent to months or years of development time. A num-
ber of commercial and open source Java ORM tools have achieved this level of
quality. This level meets the definition of ORM we’re using in this book. Let’s look
at the problems we expect to be solved by a tool that achieves full object mapping.

1.4.2 Generic ORM problems

The following list of issues, which we’ll call the O/R mapping problems, are the fun-
damental problems solved by a full object/relational mapping tool in a Java envi-
ronment. Particular ORM tools may provide extra functionality (for example,
aggressive caching), but this is a reasonably exhaustive list of the conceptual issues
that are specific to object/relational mapping:

1 What do persistent classes look like? Are they fine-grained JavaBeans? Or are
they instances of some (coarser granularity) component model like EJB?
How transparent is the persistence tool? Do we have to adopt a programming
model and conventions for classes of the business domain?

2 How is mapping metadata defined? Since the object/relational transforma-
tion is governed entirely by metadata, the format and definition of this
metadata is a centrally important issue. Should an ORM tool provide a GUI
to manipulate the metadata graphically? Or are there better approaches
to metadata definition?

3 How should we map class inheritance hierarchies? There are several standard
strategies. What about polymorphic associations, abstract classes, and
interfaces?

4 How do object identity and equality relate to database (primary key)
identity? How do we map instances of particular classes to particular

table rows?

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

26 CHAPTER 1

Understanding object/relational persistence

5 How does the persistence logic interact at runtime with the objects of the business
domain? This is a problem of generic programming, and there are a
number of solutions including source generation, runtime reflection,
runtime bytecode generation, and buildtime bytecode enhancement. The
solution to this problem might affect your build process (but, preferably,
shouldn’t otherwise affect you as a user).

6 What is the lifecyle of a persistent object? Does the lifecycle of some objects
depend upon the lifecycle of other associated objects? How do we trans-
late the lifecyle of an object to the lifecycle of a database row?

7 What facilities are provided for sorting, searching, and aggregating? The
application could do some of these things in memory. But efficient use
of relational technology requires that this work sometimes be per-
formed by the database.

8 How do we efficiently retrieve data with associations? Efficient access to rela-
tional data is usually accomplished via table joins. Object-oriented appli-
cations usually access data by navigating an object graph. Two data access
patterns should be avoided when possible: the n+1 selects problem, and its
complement, the Cartesian product problem (fetching too much data in a
single select).

In addition, two issues are common to any data-access technology. They also
impose fundamental constraints on the design and architecture of an ORM:

■ Transactions and concurrency

■ Cache management (and concurrency)

As you can see, a full object-mapping tool needs to address quite a long list of
issues. We discuss the way Hibernate manages these problems and data-access
issues in chapters 3, 4, and 5, and we broaden the subject later in the book.

By now, you should be starting to see the value of ORM. In the next section, we
look at some of the other benefits you gain when you use an ORM solution.

1.4.3 Why ORM?

An ORM implementation is a complex beast—less complex than an application
server, but more complex than a web application framework like Struts or Tapes-
try. Why should we introduce another new complex infrastructural element into
our system? Will it be worth it?
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Object/relational mapping 27

It will take us most of this book to provide a complete answer to those questions.
For the impatient, this section provides a quick summary of the most compelling
benefits. But first, let’s quickly dispose of a non-benefit.

A supposed advantage of ORM is that it “shields” developers from “messy” SQL.
This view holds that object-oriented developers can’t be expected to understand
SQL or relational databases well and that they find SQL somehow offensive. On
the contrary, we believe that Java developers must have a sufficient level of famil-
iarity with—and appreciation of—relational modeling and SQL in order to work
with ORM. ORM is an advanced technique to be used by developers who have
already done it the hard way. To use Hibernate effectively, you must be able to
view and interpret the SQL statements it issues and understand the implications
for performance.

Let’s look at some of the benefits of ORM and Hibernate.

Productivity
Persistence-related code can be perhaps the most tedious code in a Java applica-
tion. Hibernate eliminates much of the grunt work (more than you’d expect) and
lets you concentrate on the business problem. No matter which application devel-
opment strategy you prefer—top-down, starting with a domain model; or bottom-
up, starting with an existing database schema—Hibernate used together with the
appropriate tools will significantly reduce development time.

Maintainability
Fewer lines of code (LOC) makes the system more understandable since it empha-
sizes business logic rather than plumbing. Most important, a system with less code
is easier to refactor. Automated object/relational persistence substantially reduces
LOC. Of course, counting lines of code is a debatable way of measuring applica-
tion complexity.

However, there are other reasons that a Hibernate application is more maintain-
able. In systems with hand-coded persistence, an inevitable tension exists between
the relational representation and the object model implementing the domain.
Changes to one almost always involve changes to the other. And often the design
of one representation is compromised to accommodate the existence of the other.
(What almost always happens in practice is that the object model of the domain is
compromised.) ORM provides a buffer between the two models, allowing more ele-
gant use of object orientation on the Java side, and insulating each model from
minor changes to the other.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

28 CHAPTER 1

Understanding object/relational persistence

Performance
A common claim is that hand-coded persistence can always be at least as fast, and
can often be faster, than automated persistence. This is true in the same sense that
it’s true that assembly code can always be at least as fast as Java code, or a hand-
written parser can always be at least as fast as a parser generated by YACC or
ANTLR—in other words, it’s beside the point. The unspoken implication of the
claim is that hand-coded persistence will perform at least as well in an actual appli-
cation. But this implication will be true only if the effort required to implement
at-least-as-fast hand-coded persistence is similar to the amount of effort involved
in utilizing an automated solution. The really interesting question is, what hap-
pens when we consider time and budget constraints?

Given a persistence task, many optimizations are possible. Some (such as
query hints) are much easier to achieve with hand-coded SQL/JDBC. Most opti-
mizations, however, are much easier to achieve with automated ORM. In a
project with time constraints, hand-coded persistence usually allows you to make
some optimizations, some of the time. Hibernate allows many more optimiza-
tions to be used all the time. Furthermore, automated persistence improves
developer productivity so much that you can spend more time hand-optimizing
the few remaining bottlenecks.

Finally, the people who implemented your ORM software probably had much
more time to investigate performance optimizations than you have. Did you
know, for instance, that pooling PreparedStatement instances results in a signifi-
cant performance increase for the DB2 JDBC driver but breaks the InterBase JDBC
driver? Did you realize that updating only the changed columns of a table can be
significantly faster for some databases but potentially slower for others? In your
handcrafted solution, how easy is it to experiment with the impact of these vari-
ous strategies?

Vendor independence
An ORM abstracts your application away from the underlying SQL database and
SQL dialect. If the tool supports a number of different databases (most do), then
this confers a certain level of portability on your application. You shouldn’t neces-
sarily expect write once/run anywhere, since the capabilities of databases differ
and achieving full portability would require sacrificing some of the strength of the
more powerful platforms. Nevertheless, it’s usually much easier to develop a cross-
platform application using ORM. Even if you don’t require cross-platform opera-

tion, an ORM can still help mitigate some of the risks associated with vendor lock-

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 29

in. In addition, database independence helps in development scenarios where
developers use a lightweight local database but deploy for production on a differ-
ent database.

1.5 Summary

In this chapter, we’ve discussed the concept of object persistence and the impor-
tance of ORM as an implementation technique. Object persistence means that
individual objects can outlive the application process; they can be saved to a data
store and be re-created at a later point in time. The object/relational mismatch
comes into play when the data store is an SQL-based relational database manage-
ment system. For instance, a graph of objects can’t simply be saved to a database
table; it must be disassembled and persisted to columns of portable SQL data
types. A good solution for this problem is ORM, which is especially helpful if we
consider richly typed Java domain models.

A domain model represents the business entities used in a Java application. In a
layered system architecture, the domain model is used to execute business logic in
the business layer (in Java, not in the database). This business layer communicates
with the persistence layer beneath in order to load and store the persistent objects
of the domain model. ORM is the middleware in the persistence layer that manages
the persistence.

ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the developer
of 95 percent of object persistence work, such as writing complex SQL statements
with many table joins and copying values from JDBC result sets to objects or graphs
of objects. A full-featured ORM middleware might provide database portability, cer-
tain optimization techniques like caching, and other viable functions that aren’t
easy to hand-code in a limited time with SQL and JDBC.

It’s likely that a better solution than ORM will exist some day. We (and many oth-
ers) may have to rethink everything we know about SQL, persistence API standards,
and application integration. The evolution of today’s systems into true relational
database systems with seamless object-oriented integration remains pure specula-
tion. But we can’t wait, and there is no sign that any of these issues will improve
soon (a multibillion-dollar industry isn’t very agile). ORM is the best solution
currently available, and it’s a timesaver for developers facing the object/relational
mismatch every day.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Introducing and
integrating Hibernate
This chapter covers

■ Hibernate in action with “Hello World”
■ The Hibernate core programming interfaces
■ Integration with managed

and non-managed environments
■ Advanced configuration options
30

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

“Hello World” with Hibernate 31

It’s good to understand the need for object/relational mapping in Java applica-
tions, but you’re probably eager to see Hibernate in action. We’ll start by showing
you a simple example that demonstrates some of its power.

As you’re probably aware, it’s traditional for a programming book to start with
a “Hello World” example. In this chapter, we follow that tradition by introducing
Hibernate with a relatively simple “Hello World” program. However, simply print-
ing a message to a console window won’t be enough to really demonstrate Hiber-
nate. Instead, our program will store newly created objects in the database, update
them, and perform queries to retrieve them from the database.

This chapter will form the basis for the subsequent chapters. In addition to the
canonical “Hello World” example, we introduce the core Hibernate APIs and
explain how to configure Hibernate in various runtime environments, such as J2EE
application servers and stand-alone applications.

2.1 “Hello World” with Hibernate

Hibernate applications define persistent classes that are “mapped” to database tables.
Our “Hello World” example consists of one class and one mapping file. Let’s see
what a simple persistent class looks like, how the mapping is specified, and some of
the things we can do with instances of the persistent class using Hibernate.

The objective of our sample application is to store messages in a database and
to retrieve them for display. The application has a simple persistent class, Message,
which represents these printable messages. Our Message class is shown in listing 2.1.

package hello;
public class Message {
 private Long id;
 private String text;
 private Message nextMessage;
 private Message() {}
 public Message(String text) {
 this.text = text;
 }
 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }

Listing 2.1 Message.java: A simple persistent class

Identifier
attribute

Message text

Reference to
another
Message
 public String getText() {
 return text;

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

32 CHAPTER 2

Introducing and integrating Hibernate

 }
 public void setText(String text) {
 this.text = text;
 }

 public Message getNextMessage() {
 return nextMessage;
 }
 public void setNextMessage(Message nextMessage) {
 this.nextMessage = nextMessage;
 }
}

Our Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another Message. The identifier attribute allows the appli-
cation to access the database identity—the primary key value—of a persistent
object. If two instances of Message have the same identifier value, they represent
the same row in the database. We’ve chosen Long for the type of our identifier
attribute, but this isn’t a requirement. Hibernate allows virtually anything for the
identifier type, as you’ll see later.

You may have noticed that all attributes of the Message class have JavaBean-style
property accessor methods. The class also has a constructor with no parameters.
The persistent classes we use in our examples will almost always look something
like this.

Instances of the Message class may be managed (made persistent) by Hibernate,
but they don’t have to be. Since the Message object doesn’t implement any
Hibernate-specific classes or interfaces, we can use it like any other Java class:

Message message = new Message("Hello World");
System.out.println(message.getText());

This code fragment does exactly what we’ve come to expect from “Hello World”
applications: It prints "Hello World" to the console. It might look like we’re trying
to be cute here; in fact, we’re demonstrating an important feature that distin-
guishes Hibernate from some other persistence solutions, such as EJB entity
beans. Our persistent class can be used in any execution context at all—no special
container is needed. Of course, you came here to see Hibernate itself, so let’s save
a new Message to the database:

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();
Message message = new Message("Hello World");

session.save(message);

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

“Hello World” with Hibernate 33

tx.commit();
session.close();

This code calls the Hibernate Session and Transaction interfaces. (We’ll get to
that getSessionFactory() call soon.) It results in the execution of something sim-
ilar to the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (1, 'Hello World', null)

Hold on—the MESSAGE_ID column is being initialized to a strange value. We didn’t
set the id property of message anywhere, so we would expect it to be null, right?
Actually, the id property is special: It’s an identifier property—it holds a generated
unique value. (We’ll discuss how the value is generated later.) The value is
assigned to the Message instance by Hibernate when save() is called.

For this example, we assume that the MESSAGES table already exists. In chapter 9,
we’ll show you how to use Hibernate to automatically create the tables your appli-
cation needs, using just the information in the mapping files. (There’s some more
SQL you won’t need to write by hand!) Of course, we want our “Hello World” pro-
gram to print the message to the console. Now that we have a message in the data-
base, we’re ready to demonstrate this. The next example retrieves all messages
from the database, in alphabetical order, and prints them:

Session newSession = getSessionFactory().openSession();
Transaction newTransaction = newSession.beginTransaction();
List messages =
 newSession.find("from Message as m order by m.text asc");
System.out.println(messages.size() + " message(s) found:");
for (Iterator iter = messages.iterator(); iter.hasNext();) {
 Message message = (Message) iter.next();
 System.out.println(message.getText());
}
newTransaction.commit();
newSession.close();

The literal string "from Message as m order by m.text asc" is a Hibernate query,
expressed in Hibernate’s own object-oriented Hibernate Query Language (HQL).
This query is internally translated into the following SQL when find() is called:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
order by m.MESSAGE_TEXT asc

The code fragment prints

1 message(s) found:

Hello World

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

34 CHAPTER 2

Introducing and integrating Hibernate

If you’ve never used an ORM tool like Hibernate before, you were probably
expecting to see the SQL statements somewhere in the code or metadata. They
aren’t there. All SQL is generated at runtime (actually at startup, for all reusable
SQL statements).

To allow this magic to occur, Hibernate needs more information about how the
Message class should be made persistent. This information is usually provided in an
XML mapping document. The mapping document defines, among other things, how
properties of the Message class map to columns of the MESSAGES table. Let’s look at
the mapping document in listing 2.2.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class
 name="hello.Message"
 table="MESSAGES">
 <id
 name="id"
 column="MESSAGE_ID">
 <generator class="increment"/>
 </id>
 <property
 name="text"
 column="MESSAGE_TEXT"/>
 <many-to-one
 name="nextMessage"
 cascade="all"
 column="NEXT_MESSAGE_ID"/>
 </class>
</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a column named NEXT_MESSAGE_ID. (Don’t worry about the other
details for now.)

As you can see, the XML document isn’t difficult to understand. You can easily

Listing 2.2 A simple Hibernate XML mapping

Note that Hibernate 2.0
and Hibernate 2.1

have the same DTD!
write and maintain it by hand. In chapter 3, we discuss a way of generating the

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

“Hello World” with Hibernate 35

XML file from comments embedded in the source code. Whichever method you
choose, Hibernate has enough information to completely generate all the SQL
statements that would be needed to insert, update, delete, and retrieve instances
of the Message class. You no longer need to write these SQL statements by hand.

NOTE Many Java developers have complained of the “metadata hell” that
accompanies J2EE development. Some have suggested a movement away
from XML metadata, back to plain Java code. Although we applaud this
suggestion for some problems, ORM represents a case where text-based
metadata really is necessary. Hibernate has sensible defaults that mini-
mize typing and a mature document type definition that can be used for
auto-completion or validation in editors. You can even automatically gen-
erate metadata with various tools.

Now, let’s change our first message and, while we’re at it, create a new message
associated with the first, as shown in listing 2.3.

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

// 1 is the generated id of the first message
Message message =
 (Message) session.load(Message.class, new Long(1));
message.setText("Greetings Earthling");
Message nextMessage = new Message("Take me to your leader (please)");
message.setNextMessage(nextMessage);
tx.commit();
session.close();

This code calls three SQL statements inside the same transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES
set MESSAGE_TEXT = 'Greetings Earthling', NEXT_MESSAGE_ID = 2
where MESSAGE_ID = 1

Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database. We’ve

Listing 2.3 Updating a message
taken advantage of a Hibernate feature called automatic dirty checking: This feature

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

36 CHAPTER 2

Introducing and integrating Hibernate

saves us the effort of explicitly asking Hibernate to update the database when we
modify the state of an object inside a transaction. Similarly, you can see that the
new message was made persistent when a reference was created from the first mes-
sage. This feature is called cascading save: It saves us the effort of explicitly making
the new object persistent by calling save(), as long as it’s reachable by an already-
persistent instance. Also notice that the ordering of the SQL statements isn’t the
same as the order in which we set property values. Hibernate uses a sophisticated
algorithm to determine an efficient ordering that avoids database foreign key con-
straint violations but is still sufficiently predictable to the user. This feature is
called transactional write-behind.

If we run “Hello World” again, it prints

 2 message(s) found:
 Greetings Earthling
 Take me to your leader (please)

This is as far as we’ll take the “Hello World” application. Now that we finally have
some code under our belt, we’ll take a step back and present an overview of
Hibernate’s main APIs.

2.2 Understanding the architecture

The programming interfaces are the first thing you have to learn about Hiber-
nate in order to use it in the persistence layer of your application. A major objec-
tive of API design is to keep the interfaces between software components as
narrow as possible. In practice, however, ORM APIs aren’t especially small. Don’t
worry, though; you don’t have to understand all the Hibernate interfaces at once.
Figure 2.1 illustrates the roles of the most important Hibernate interfaces in the
business and persistence layers. We show the business layer above the persistence
layer, since the business layer acts as a client of the persistence layer in a tradi-
tionally layered application. Note that some simple applications might not
cleanly separate business logic from persistence logic; that’s okay—it merely sim-
plifies the diagram.

The Hibernate interfaces shown in figure 2.1 may be approximately classified as
follows:

■ Interfaces called by applications to perform basic CRUD and querying oper-
ations. These interfaces are the main point of dependency of application
business/control logic on Hibernate. They include Session, Transaction,

and Query.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the architecture 37

■ Interfaces called by application infrastructure code to configure Hibernate,
most importantly the Configuration class.

■ Callback interfaces that allow the application to react to events occurring
inside Hibernate, such as Interceptor, Lifecycle, and Validatable.

■ Interfaces that allow extension of Hibernate’s powerful mapping function-
ality, such as UserType, CompositeUserType, and IdentifierGenerator.
These interfaces are implemented by application infrastructure code (if
necessary).

Hibernate makes use of existing Java APIs, including JDBC), Java Transaction API
(JTA, and Java Naming and Directory Interface (JNDI). JDBC provides a rudimen-
tary level of abstraction of functionality common to relational databases, allowing
almost any database with a JDBC driver to be supported by Hibernate. JNDI and
JTA allow Hibernate to be integrated with J2EE application servers.

In this section, we don’t cover the detailed semantics of Hibernate API methods,
just the role of each of the primary interfaces. You can find most of these interfaces
in the package net.sf.hibernate. Let’s take a brief look at each interface in turn.
Figure 2.1 High-level overview of the HIbernate API in a layered architecture

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

38 CHAPTER 2

Introducing and integrating Hibernate

2.2.1 The core interfaces

The five core interfaces are used in just about every Hibernate application.
Using these interfaces, you can store and retrieve persistent objects and control
transactions.

Session interface
The Session interface is the primary interface used by Hibernate applications. An
instance of Session is lightweight and is inexpensive to create and destroy. This is
important because your application will need to create and destroy sessions all the
time, perhaps on every request. Hibernate sessions are not threadsafe and should
by design be used by only one thread at a time.

The Hibernate notion of a session is something between connection and transac-
tion. It may be easier to think of a session as a cache or collection of loaded objects
relating to a single unit of work. Hibernate can detect changes to the objects in this
unit of work. We sometimes call the Session a persistence manager because it’s also
the interface for persistence-related operations such as storing and retrieving
objects. Note that a Hibernate session has nothing to do with the web-tier HttpSes-
sion. When we use the word session in this book, we mean the Hibernate session.
We sometimes use user session to refer to the HttpSession object.

We describe the Session interface in detail in chapter 4, section 4.2, “The per-
sistence manager.”

SessionFactory interface
The application obtains Session instances from a SessionFactory. Compared to
the Session interface, this object is much less exciting.

The SessionFactory is certainly not lightweight! It’s intended to be shared
among many application threads. There is typically a single SessionFactory for the
whole application—created during application initialization, for example. How-
ever, if your application accesses multiple databases using Hibernate, you’ll need
a SessionFactory for each database.

The SessionFactory caches generated SQL statements and other mapping
metadata that Hibernate uses at runtime. It also holds cached data that has been
read in one unit of work and may be reused in a future unit of work (only if class
and collection mappings specify that this second-level cache is desirable).
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the architecture 39

Configuration interface
The Configuration object is used to configure and bootstrap Hibernate. The
application uses a Configuration instance to specify the location of mapping doc-
uments and Hibernate-specific properties and then create the SessionFactory.

Even though the Configuration interface plays a relatively small part in the
total scope of a Hibernate application, it’s the first object you’ll meet when you
begin using Hibernate. Section 2.3 covers the problem of configuring Hibernate
in some detail.

Transaction interface
The Transaction interface is an optional API. Hibernate applications may choose
not to use this interface, instead managing transactions in their own infrastruc-
ture code. A Transaction abstracts application code from the underlying transac-
tion implementation—which might be a JDBC transaction, a JTA UserTransaction,
or even a Common Object Request Broker Architecture (CORBA) transaction—
allowing the application to control transaction boundaries via a consistent API.
This helps to keep Hibernate applications portable between different kinds of
execution environments and containers.

We use the Hibernate Transaction API throughout this book. Transactions and
the Transaction interface are explained in chapter 5.

Query and Criteria interfaces
The Query interface allows you to perform queries against the database and con-
trol how the query is executed. Queries are written in HQL or in the native SQL
dialect of your database. A Query instance is used to bind query parameters, limit
the number of results returned by the query, and finally to execute the query.

The Criteria interface is very similar; it allows you to create and execute object-
oriented criteria queries.

To help make application code less verbose, Hibernate provides some short-
cut methods on the Session interface that let you invoke a query in one line of
code. We won’t use these shortcuts in the book; instead, we’ll always use the
Query interface.

A Query instance is lightweight and can’t be used outside the Session that cre-
ated it. We describe the features of the Query interface in chapter 7.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

40 CHAPTER 2

Introducing and integrating Hibernate

2.2.2 Callback interfaces

Callback interfaces allow the application to receive a notification when something
interesting happens to an object—for example, when an object is loaded, saved,
or deleted. Hibernate applications don’t need to implement these callbacks, but
they’re useful for implementing certain kinds of generic functionality, such as cre-
ating audit records.

The Lifecycle and Validatable interfaces allow a persistent object to react to
events relating to its own persistence lifecycle. The persistence lifecycle is encom-
passed by an object’s CRUD operations. The Hibernate team was heavily influ-
enced by other ORM solutions that have similar callback interfaces. Later, they
realized that having the persistent classes implement Hibernate-specific interfaces
probably isn’t a good idea, because doing so pollutes our persistent classes with
nonportable code. Since these approaches are no longer favored, we don’t discuss
them in this book.

The Interceptor interface was introduced to allow the application to process
callbacks without forcing the persistent classes to implement Hibernate-specific
APIs. Implementations of the Interceptor interface are passed to the persistent
instances as parameters. We’ll discuss an example in chapter 8.

2.2.3 Types

A fundamental and very powerful element of the architecture is Hibernate’s
notion of a Type. A Hibernate Type object maps a Java type to a database column
type (actually, the type may span multiple columns). All persistent properties of
persistent classes, including associations, have a corresponding Hibernate type.
This design makes Hibernate extremely flexible and extensible.

There is a rich range of built-in types, covering all Java primitives and many JDK
classes, including types for java.util.Currency, java.util.Calendar, byte[], and
java.io.Serializable.

Even better, Hibernate supports user-defined custom types. The interfaces
UserType and CompositeUserType are provided to allow you to add your own types.
You can use this feature to allow commonly used application classes such as
Address, Name, or MonetaryAmount to be handled conveniently and elegantly. Cus-
tom types are considered a central feature of Hibernate, and you’re encouraged to
put them to new and creative uses!

We explain Hibernate types and user-defined types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic configuration 41

2.2.4 Extension interfaces

Much of the functionality that Hibernate provides is configurable, allowing you to
choose between certain built-in strategies. When the built-in strategies are insuffi-
cient, Hibernate will usually let you plug in your own custom implementation by
implementing an interface. Extension points include:

■ Primary key generation (IdentifierGenerator interface)

■ SQL dialect support (Dialect abstract class)

■ Caching strategies (Cache and CacheProvider interfaces)

■ JDBC connection management (ConnectionProvider interface)

■ Transaction management (TransactionFactory, Transaction, and Transac-
tionManagerLookup interfaces)

■ ORM strategies (ClassPersister interface hierarchy)

■ Property access strategies (PropertyAccessor interface)

■ Proxy creation (ProxyFactory interface)

Hibernate ships with at least one implementation of each of the listed interfaces,
so you don’t usually need to start from scratch if you wish to extend the built-in
functionality. The source code is available for you to use as an example for your
own implementation.

By now you can see that before we can start writing any code that uses Hibernate,
we must answer this question: How do we get a Session to work with?

2.3 Basic configuration

We’ve looked at an example application and examined Hibernate’s core inter-
faces. To use Hibernate in an application, you need to know how to configure it.
Hibernate can be configured to run in almost any Java application and develop-
ment environment. Generally, Hibernate is used in two- and three-tiered client/
server applications, with Hibernate deployed only on the server. The client appli-
cation is usually a web browser, but Swing and SWT client applications aren’t
uncommon. Although we concentrate on multitiered web applications in this
book, our explanations apply equally to other architectures, such as command-
line applications. It’s important to understand the difference in configuring
Hibernate for managed and non-managed environments:

■ Managed environment—Pools resources such as database connections and

allows transaction boundaries and security to be specified declaratively (that

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

42 CHAPTER 2

Introducing and integrating Hibernate

is, in metadata). A J2EE application server such as JBoss, BEA WebLogic, or
IBM WebSphere implements the standard (J2EE-specific) managed environ-
ment for Java.

■ Non-managed environment—Provides basic concurrency management via
thread pooling. A servlet container like Jetty or Tomcat provides a non-
managed server environment for Java web applications. A stand-alone desk-
top or command-line application is also considered non-managed. Non-
managed environments don’t provide automatic transaction or resource
management or security infrastructure. The application itself manages data-
base connections and demarcates transaction boundaries.

Hibernate attempts to abstract the environment in which it’s deployed. In the case
of a non-managed environment, Hibernate handles transactions and JDBC connec-
tions (or delegates to application code that handles these concerns). In managed
environments, Hibernate integrates with container-managed transactions and
datasources. Hibernate can be configured for deployment in both environments.

In both managed and non-managed environments, the first thing you must do
is start Hibernate. In practice, doing so is very easy: You have to create a Session-
Factory from a Configuration.

2.3.1 Creating a SessionFactory

In order to create a SessionFactory, you first create a single instance of Configu-
ration during application initialization and use it to set the location of the map-
ping files. Once configured, the Configuration instance is used to create the
SessionFactory. After the SessionFactory is created, you can discard the Config-
uration class.

The following code starts Hibernate:

Configuration cfg = new Configuration();
cfg.addResource("hello/Message.hbm.xml");
cfg.setProperties(System.getProperties());
SessionFactory sessions = cfg.buildSessionFactory();

The location of the mapping file, Message.hbm.xml, is relative to the root of the
application classpath. For example, if the classpath is the current directory, the
Message.hbm.xml file must be in the hello directory. XML mapping files must be
placed in the classpath. In this example, we also use the system properties of the
virtual machine to set all other configuration options (which might have been set
before by application code or as startup options).
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic configuration 43

Method chaining is a programming style supported by many Hibernate
interfaces. This style is more popular in Smalltalk than in Java and is
considered by some people to be less readable and more difficult to
debug than the more accepted Java style. However, it’s very convenient
in most cases.

Most Java developers declare setter or adder methods to be of type
void, meaning they return no value. In Smalltalk, which has no void
type, setter or adder methods usually return the receiving object. This
would allow us to rewrite the previous code example as follows:

 SessionFactory sessions = new Configuration()
 .addResource("hello/Message.hbm.xml")
 .setProperties(System.getProperties())
 .buildSessionFactory();

Notice that we didn’t need to declare a local variable for the Configura-
tion. We use this style in some code examples; but if you don’t like it, you
don’t need to use it yourself. If you do use this coding style, it’s better to
write each method invocation on a different line. Otherwise, it might be
difficult to step through the code in your debugger.

By convention, Hibernate XML mapping files are named with the .hbm.xml exten-
sion. Another convention is to have one mapping file per class, rather than have
all your mappings listed in one file (which is possible but considered bad style).
Our “Hello World” example had only one persistent class, but let’s assume we
have multiple persistent classes, with an XML mapping file for each. Where should
we put these mapping files?

The Hibernate documentation recommends that the mapping file for each per-
sistent class be placed in the same directory as that class. For instance, the mapping
file for the Message class would be placed in the hello directory in a file named
Message.hbm.xml. If we had another persistent class, it would be defined in its own
mapping file. We suggest that you follow this practice. The monolithic metadata
files encouraged by some frameworks, such as the struts-config.xml found in
Struts, are a major contributor to “metadata hell.” You load multiple mapping files
by calling addResource() as often as you have to. Alternatively, if you follow the con-
vention just described, you can use the method addClass(), passing a persistent
class as the parameter:

SessionFactory sessions = new Configuration()
 .addClass(org.hibernate.auction.model.Item.class)
 .addClass(org.hibernate.auction.model.Category.class)
 .addClass(org.hibernate.auction.model.Bid.class)

METHOD
CHAINING
 .setProperties(System.getProperties())
 .buildSessionFactory();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

44 CHAPTER 2

Introducing and integrating Hibernate

The addClass() method assumes that the name of the mapping file ends with the
.hbm.xml extension and is deployed along with the mapped class file.

We’ve demonstrated the creation of a single SessionFactory, which is all that
most applications need. If another SessionFactory is needed—if there are multi-
ple databases, for example—you repeat the process. Each SessionFactory is then
available for one database and ready to produce Sessions to work with that partic-
ular database and a set of class mappings.

Of course, there is more to configuring Hibernate than just pointing to map-
ping documents. You also need to specify how database connections are to be
obtained, along with various other settings that affect the behavior of Hibernate at
runtime. The multitude of configuration properties may appear overwhelming (a
complete list appears in the Hibernate documentation), but don’t worry; most
define reasonable default values, and only a handful are commonly required.

To specify configuration options, you may use any of the following techniques:

■ Pass an instance of java.util.Properties to Configuration.setProper-
ties().

■ Set system properties using java -Dproperty=value.

■ Place a file called hibernate.properties in the classpath.

■ Include <property> elements in hibernate.cfg.xml in the classpath.

The first and second options are rarely used except for quick testing and proto-
types, but most applications need a fixed configuration file. Both the hibernate.
properties and the hibernate.cfg.xml files provide the same function: to config-
ure Hibernate. Which file you choose to use depends on your syntax preference.
It’s even possible to mix both options and have different settings for development
and deployment, as you’ll see later in this chapter.

A rarely used alternative option is to allow the application to provide a JDBC Con-
nection when it opens a Hibernate Session from the SessionFactory (for exam-
ple, by calling sessions.openSession(myConnection)). Using this option means
that you don’t have to specify any database connection properties. We don’t rec-
ommend this approach for new applications that can be configured to use the envi-
ronment’s database connection infrastructure (for example, a JDBC connection
pool or an application server datasource).

Of all the configuration options, database connection settings are the most
important. They differ in managed and non-managed environments, so we deal
with the two cases separately. Let’s start with non-managed.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic configuration 45

2.3.2 Configuration in non-managed environments

In a non-managed environment, such as a servlet container, the application is
responsible for obtaining JDBC connections. Hibernate is part of the application,
so it’s responsible for getting these connections. You tell Hibernate how to get (or
create new) JDBC connections. Generally, it isn’t advisable to create a connection
each time you want to interact with the database. Instead, Java applications should
use a pool of JDBC connections. There are three reasons for using a pool:

■ Acquiring a new connection is expensive.

■ Maintaining many idle connections is expensive.

■ Creating prepared statements is also expensive for some drivers.

Figure 2.2 shows the role of a JDBC connection pool in a web application runtime
environment. Since this non-managed environment doesn’t implement connec-
tion pooling, the application must implement its own pooling algorithm or rely
upon a third-party library such as the open source C3P0 connection pool. Without
Hibernate, the application code usually calls the connection pool to obtain JDBC
connections and execute SQL statements.

With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate Session and
Query APIs for persistence operations and only has to manage database transac-
tions, ideally using the Hibernate Transaction API.

Using a connection pool
Hibernate defines a plugin architecture that allows integration with any connec-
tion pool. However, support for C3P0 is built in, so we’ll use that. Hibernate will
set up the configuration pool for you with the given properties. An example of a
hibernate.properties file using C3P0 is shown in listing 2.4.

Non-Managed Environment

Database

Connection
Pool

User-managed
JDBC connections

JSP

main()
Servlet

Application
Figure 2.2 JDBC connection pooling in a non-managed environment

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

46 CHAPTER 2

Introducing and integrating Hibernate

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/auctiondb
hibernate.connection.username = auctionuser
hibernate.connection.password = secret
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=300
hibernate.c3p0.max_statements=50
hibernate.c3p0.idle_test_period=3000

This code’s lines specify the following information, beginning with the first line:

■ The name of the Java class implementing the JDBC Driver (the driver JAR
file must be placed in the application’s classpath).

■ A JDBC URL that specifies the host and database name for JDBC connec-
tions.

■ The database user name.

■ The database password for the specified user.

■ A Dialect for the database. Despite the ANSI standardization effort, SQL is
implemented differently by various databases vendors. So, you must specify
a Dialect. Hibernate includes built-in support for all popular SQL data-
bases, and new dialects may be defined easily.

■ The minimum number of JDBC connections that C3P0 will keep ready.

Listing 2.4 Using hibernate.properties for C3P0 connection pool settings

JSP

main()
Servlet

Application

Hibernate

Database

Connection
Pool

Session

Transaction

Query

Non-Managed Environment

Figure 2.3 Hibernate with a connection pool in a non-managed environment
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic configuration 47

■ The maximum number of connections in the pool. An exception will be
thrown at runtime if this number is exhausted.

■ The timeout period (in this case, 5 minutes or 300 seconds) after which an
idle connection will be removed from the pool.

■ The maximum number of prepared statements that will be cached. Caching
of prepared statements is essential for best performance with Hibernate.

■ The idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as Hibernate’s
connection pool (you don’t need any other switch to enable C3P0 support). C3P0
has even more features than we’ve shown in the previous example, so we refer you
to the Hibernate API documentation. The Javadoc for the class net.sf.hiber-
nate.cfg.Environment documents every Hibernate configuration property,
including all C3P0-related settings and settings for other third-party connection
pools directly supported by Hibernate.

The other supported connection pools are Apache DBCP and Proxool. You
should try each pool in your own environment before deciding between them. The
Hibernate community tends to prefer C3P0 and Proxool.

Hibernate also ships with a default connection pooling mechanism. This con-
nection pool is only suitable for testing and experimenting with Hibernate: You
should not use this built-in pool in production systems. It isn’t designed to scale to
an environment with many concurrent requests, and it lacks the fault tolerance fea-
tures found in specialized connection pools.

Starting Hibernate
How do you start Hibernate with these properties? You declared the properties in
a file named hibernate.properties, so you need only place this file in the applica-
tion classpath. It will be automatically detected and read when Hibernate is first
initialized when you create a Configuration object.

Let’s summarize the configuration steps you’ve learned so far (this is a good
time to download and install Hibernate, if you’d like to continue in a non-
managed environment):

1 Download and unpack the JDBC driver for your database, which is usually
available from the database vendor web site. Place the JAR files in the appli-
cation classpath; do the same with hibernate2.jar.

2 Add Hibernate’s dependencies to the classpath; they’re distributed along

with Hibernate in the lib/ directory. See also the text file lib/README.txt
for a list of required and optional libraries.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

48 CHAPTER 2

Introducing and integrating Hibernate

3 Choose a JDBC connection pool supported by Hibernate and configure it
with a properties file. Don’t forget to specify the SQL dialect.

4 Let the Configuration know about these properties by placing them in a
hibernate.properties file in the classpath.

5 Create an instance of Configuration in your application and load the XML
mapping files using either addResource() or addClass(). Build a Session-
Factory from the Configuration by calling buildSessionFactory().

Unfortunately, you don’t have any mapping files yet. If you like, you can run the
“Hello World” example or skip the rest of this chapter and start learning about
persistent classes and mappings in chapter 3. Or, if you want to know more about
using Hibernate in a managed environment, read on.

2.3.3 Configuration in managed environments

A managed environment handles certain cross-cutting concerns, such as applica-
tion security (authorization and authentication), connection pooling, and trans-
action management. J2EE application servers are typical managed environments.
Although application servers are generally designed to support EJBs, you can still
take advantage of the other managed services provided, even if you don’t use EJB
entity beans.

Hibernate is often used with session or message-driven EJBs, as shown in
figure 2.4. EJBs call the same Hibernate APIs as servlets, JSPs, or stand-alone appli-
cations: Session, Transaction, and Query. The Hibernate-related code is fully por-
table between non-managed and managed environments. Hibernate handles the
different connection and transaction strategies transparently.

EJB

EJB
EJB

Application

Hibernate

Session

Transaction

Query

Transaction
Manager

Database

Resource
Manager

Application Server
Figure 2.4 Hibernate in a managed environment with an application server

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic configuration 49

An application server exposes a connection pool as a JNDI-bound datasource, an
instance of javax.jdbc.Datasource. You need to tell Hibernate where to find the
datasource in JNDI, by supplying a fully qualified JNDI name. An example Hiber-
nate configuration file for this scenario is shown in listing 2.5.

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect

This file first gives the JNDI name of the datasource. The datasource must be
configured in the J2EE enterprise application deployment descriptor; this is a
vendor-specific setting. Next, you enable Hibernate integration with JTA. Now
Hibernate needs to locate the application server’s TransactionManager in order to
integrate fully with the container transactions. No standard approach is defined
by the J2EE specification, but Hibernate includes support for all popular applica-
tion servers. Finally, of course, the Hibernate SQL dialect is required.

Now that you’ve configured everything correctly, using Hibernate in a managed
environment isn’t much different than using it in a non-managed environment: Just
create a Configuration with mappings and build a SessionFactory. However, some
of the transaction environment–related settings deserve some extra consideration.

Java already has a standard transaction API, JTA, which is used to control trans-
actions in a managed environment with J2EE. This is called container-managed trans-
actions (CMT). If a JTA transaction manager is present, JDBC connections are
enlisted with this manager and under its full control. This isn’t the case in a non-
managed environment, where an application (or the pool) manages the JDBC con-
nections and JDBC transactions directly.

Therefore, managed and non-managed environments can use different transac-
tion methods. Since Hibernate needs to be portable across these environments, it
defines an API for controlling transactions. The Hibernate Transaction interface
abstracts the underlying JTA or JDBC transaction (or, potentially, even a CORBA
transaction). This underlying transaction strategy is set with the property hiber-
nate.connection.factory_class, and it can take one of the following two values:

Listing 2.5 Sample hibernate.properties for a container-provided datasource
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

50 CHAPTER 2

Introducing and integrating Hibernate

■ net.sf.hibernate.transaction.JDBCTransactionFactory delegates to direct
JDBC transactions. This strategy should be used with a connection pool in a
non-managed environment and is the default if no strategy is specified.

■ net.sf.hibernate.transaction.JTATransactionFactory delegates to JTA.
This is the correct strategy for CMT, where connections are enlisted with JTA.
Note that if a JTA transaction is already in progress when beginTransac-
tion() is called, subsequent work takes place in the context of that transac-
tion (otherwise a new JTA transaction is started).

For a more detailed introduction to Hibernate’s Transaction API and the effects
on your specific application scenario, see chapter 5, section 5.1, “Transactions.”
Just remember the two steps that are necessary if you work with a J2EE application
server: Set the factory class for the Hibernate Transaction API to JTA as described
earlier, and declare the transaction manager lookup specific to your application
server. The lookup strategy is required only if you use the second-level caching sys-
tem in Hibernate, but it doesn’t hurt to set it even without using the cache.

Tomcat isn’t a full application server; it’s just a servlet container, albeit a
servlet container with some features usually found only in application
servers. One of these features may be used with Hibernate: the Tomcat
connection pool. Tomcat uses the DBCP connection pool internally but
exposes it as a JNDI datasource, just like a real application server. To con-
figure the Tomcat datasource, you’ll need to edit server.xml according
to instructions in the Tomcat JNDI/JDBC documentation. You can config-
ure Hibernate to use this datasource by setting hibernate.connec-
tion.datasource. Keep in mind that Tomcat doesn’t ship with a
transaction manager, so this situation is still more like a non-managed
environment as described earlier.

You should now have a running Hibernate system, whether you use a simple serv-
let container or an application server. Create and compile a persistent class (the
initial Message, for example), copy Hibernate and its required libraries to the
classpath together with a hibernate.properties file, and build a SessionFactory.

The next section covers advanced Hibernate configuration options. Some of
them are recommended, such as logging executed SQL statements for debugging
or using the convenient XML configuration file instead of plain properties. How-
ever, you may safely skip this section and come back later once you have read more
about persistent classes in chapter 3.

HIBERNATE
WITH

TOMCAT
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced configuration settings 51

2.4 Advanced configuration settings

When you finally have a Hibernate application running, it’s well worth getting to
know all the Hibernate configuration parameters. These parameters let you opti-
mize the runtime behavior of Hibernate, especially by tuning the JDBC interaction
(for example, using JDBC batch updates).

We won’t bore you with these details now; the best source of information about
configuration options is the Hibernate reference documentation. In the previous
section, we showed you the options you’ll need to get started.

However, there is one parameter that we must emphasize at this point. You’ll
need it continually whenever you develop software with Hibernate. Setting the
property hibernate.show_sql to the value true enables logging of all generated
SQL to the console. You’ll use it for troubleshooting, performance tuning, and just
to see what’s going on. It pays to be aware of what your ORM layer is doing—that’s
why ORM doesn’t hide SQL from developers.

So far, we’ve assumed that you specify configuration parameters using a hiber-
nate.properties file or an instance of java.util.Properties programmatically.
There is a third option you’ll probably like: using an XML configuration file.

2.4.1 Using XML-based configuration

You can use an XML configuration file (as demonstrated in listing 2.6) to fully
configure a SessionFactory. Unlike hibernate.properties, which contains only
configuration parameters, the hibernate.cfg.xml file may also specify the loca-
tion of mapping documents. Many users prefer to centralize the configuration of
Hibernate in this way instead of adding parameters to the Configuration in appli-
cation code.

?xml version='1.0'encoding='utf-8'?>
<!DOCTYPE hibernate-configuration
 PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">
<hibernate-configuration>
 <session-factory name="java:/hibernate/HibernateFactory">
 <property name="show_sql">true</property>
 <property name="connection.datasource">
 java:/comp/env/jdbc/AuctionDB
 </property>
 <property name="dialect">

Listing 2.6 Sample hibernate.cfg.xml configuration file

B
Document type

declaration

Name
attributeC

D Property
specifications
 net.sf.hibernate.dialect.PostgreSQLDialect
 </property>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

52 CHAPTER 2

Introducing and integrating Hibernate

 <property name="transaction.manager_lookup_class">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <mapping resource="auction/Item.hbm.xml"/>
 <mapping resource="auction/Category.hbm.xml"/>
 <mapping resource="auction/Bid.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD.

The optional name attribute is equivalent to the property hibernate.session_
factory_name and used for JNDI binding of the SessionFactory, discussed in the
next section.

Hibernate properties may be specified without the hibernate prefix. Property
names and values are otherwise identical to programmatic configuration
properties.

Mapping documents may be specified as application resources or even as hard-
coded filenames. The files used here are from our online auction application,
which we’ll introduce in chapter 3.

Now you can initialize Hibernate using

SessionFactory sessions = new Configuration()
 .configure().buildSessionFactory();

Wait—how did Hibernate know where the configuration file was located?
When configure() was called, Hibernate searched for a file named hiber-

nate.cfg.xml in the classpath. If you wish to use a different filename or have Hiber-
nate look in a subdirectory, you must pass a path to the configure() method:

SessionFactory sessions = new Configuration()
 .configure("/hibernate-config/auction.cfg.xml")
 .buildSessionFactory();

Using an XML configuration file is certainly more comfortable than a properties
file or even programmatic property configuration. The fact that you can have the
class mapping files externalized from the application’s source (even if it would be
only in a startup helper class) is a major benefit of this approach. You can, for
example, use different sets of mapping files (and different configuration
options), depending on your database and environment (development or pro-

d
E Mapping

document
specifications

B

C

D

E

duction), and switch them programatically.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced configuration settings 53

If you have both hibernate.properties and hibernate.cfg.xml in the classpath,
the settings of the XML configuration file will override the settings used in the
properties. This is useful if you keep some base settings in properties and override
them for each deployment with an XML configuration file.

You may have noticed that the SessionFactory was also given a name in the XML
configuration file. Hibernate uses this name to automatically bind the SessionFac-
tory to JNDI after creation.

2.4.2 JNDI-bound SessionFactory

In most Hibernate applications, the SessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any Sessions should be created using this single
SessionFactory. A frequently asked question is where this factory must be placed
and how it can be accessed without much hassle.

In a J2EE environment, a SessionFactory bound to JNDI is easily shared between
different threads and between various Hibernate-aware components. Or course,
JNDI isn’t the only way that application components might obtain a SessionFac-
tory. There are many possible implementations of this Registry pattern, including
use of the ServletContext or a static final variable in a singleton. A particularly
elegant approach is to use an application scope IoC (Inversion of Control) frame-
work component. However, JNDI is a popular approach (and is exposed as a JMX
service, as you'll see later). We discuss some of the alternatives in chapter 8,
section 8.1, “Designing layered applications.”

NOTE The Java Naming and Directory Interface (JNDI) API allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transac-
tion contexts, datasources), configuration settings (environment settings,
user registries), and even application objects (EJB references, object fac-
tories) may all be bound to JNDI.

The SessionFactory will automatically bind itself to JNDI if the property hiber-
nate.session_factory_name is set to the name of the directory node. If your run-
time environment doesn’t provide a default JNDI context (or if the default JNDI
implementation doesn’t support instances of Referenceable), you need to specify
a JNDI initial context using the properties hibernate.jndi.url and hiber-
nate.jndi.class.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

54 CHAPTER 2

Introducing and integrating Hibernate

Here is an example Hibernate configuration that binds the SessionFactory to
the name hibernate/HibernateFactory using Sun’s (free) file system–based JNDI
implementation, fscontext.jar:

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.session_factory_name = hibernate/HibernateFactory
hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
hibernate.jndi.url = file:/auction/jndi

Of course, you can also use the XML-based configuration for this task. This exam-
ple also isn’t realistic, since most application servers that provide a connection
pool through JNDI also have a JNDI implementation with a writable default con-
text. JBoss certainly has, so you can skip the last two properties and just specify a
name for the SessionFactory. All you have to do now is call Configuration.con-
figure().buildSessionFactory() once to initialize the binding.

NOTE Tomcat comes bundled with a read-only JNDI context, which isn’t writ-
able from application-level code after the startup of the servlet con-
tainer. Hibernate can’t bind to this context; you have to either use a full
context implementation (like the Sun FS context) or disable JNDI bind-
ing of the SessionFactory by omitting the session_factory_name prop-
erty in the configuration.

Let’s look at some other very important configuration settings that log Hibernate
operations.

2.4.3 Logging

Hibernate (and many other ORM implementations) executes SQL statements
asynchronously. An INSERT statement isn’t usually executed when the application
calls Session.save(); an UPDATE isn’t immediately issued when the application
calls Item.addBid(). Instead, the SQL statements are usually issued at the end of a
transaction. This behavior is called write-behind, as we mentioned earlier.

This fact is evidence that tracing and debugging ORM code is sometimes non-
trivial. In theory, it’s possible for the application to treat Hibernate as a black box
and ignore this behavior. Certainly the Hibernate application can’t detect this
asynchronicity (at least, not without resorting to direct JDBC calls). However, when

you find yourself troubleshooting a difficult problem, you need to be able to see
exactly what’s going on inside Hibernate. Since Hibernate is open source, you can

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced configuration settings 55

easily step into the Hibernate code. Occasionally, doing so helps a great deal! But,
especially in the face of asynchronous behavior, debugging Hibernate can quickly
get you lost. You can use logging to get a view of Hibernate’s internals.

We’ve already mentioned the hibernate.show_sql configuration parameter,
which is usually the first port of call when troubleshooting. Sometimes the SQL
alone is insufficient; in that case, you must dig a little deeper.

Hibernate logs all interesting events using Apache commons-logging, a thin
abstraction layer that directs output to either Apache log4j (if you put log4j.jar
in your classpath) or JDK1.4 logging (if you’re running under JDK1.4 or above and
log4j isn’t present). We recommend log4j, since it’s more mature, more popular,
and under more active development.

To see any output from log4j, you’ll need a file named log4j.properties in your
classpath (right next to hibernate.properties or hibernate.cfg.xml). This exam-
ple directs all log messages to the console:

direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE}
➾ %5p %c{1}:%L - %m%n
root logger option ###
log4j.rootLogger=warn, stdout
Hibernate logging options ###
log4j.logger.net.sf.hibernate=info
log JDBC bind parameters ###
log4j.logger.net.sf.hibernate.type=info
log PreparedStatement cache activity
log4j.logger.net.sf.hibernate.ps.PreparedStatementCache=info

With this configuration, you won’t see many log messages at runtime. Replacing
info with debug for the log4j.logger.net.sf.hibernate category will reveal the
inner workings of Hibernate. Make sure you don’t do this in a production envi-
ronment—writing the log will be much slower than the actual database access.

Finally, you have the hibernate.properties, hibernate.cfg.xml, and
log4j.properties configuration files.

There is another way to configure Hibernate, if your application server supports
the Java Management Extensions.

2.4.4 Java Management Extensions (JMX)

The Java world is full of specifications, standards, and, of course, implementations

of these. A relatively new but important standard is in its first version: the Java

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

56 CHAPTER 2

Introducing and integrating Hibernate

Management Extensions (JMX). JMX is about the management of systems compo-
nents or, better, of system services.

Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services like managed transactions and
pooled database transactions. But why not make Hibernate a managed service
itself, which others can depend on and use? This is possible with the Hibernate JMX
integration, making Hibernate a managed JMX component.

The JMX specification defines the following components:

■ The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

■ The JMX container—Mediates generic access (local or remote) to the MBean

■ The (usually generic) JMX client—May be used to administer any MBean via
the JMX container

An application server with support for JMX (such as JBoss) acts as a JMX container
and allows an MBean to be configured and initialized as part of the application
server startup process. It’s possible to monitor and administer the MBean using
the application server’s administration console (which acts as the JMX client).

An MBean may be packaged as a JMX service, which is not only portable
between application servers with JMX support but also deployable to a running sys-
tem (a hot deploy).

Hibernate may be packaged and administered as a JMX MBean. The Hibernate
JMX service allows Hibernate to be initialized at application server startup and con-
trolled (configured) via a JMX client. However, JMX components aren’t automati-
cally integrated with container-managed transactions. So, the configuration
options in listing 2.7 (a JBoss service deployment descriptor) look similar to the
usual Hibernate settings in a managed environment.

<server>
<mbean
 code="net.sf.hibernate.jmx.HibernateService"
 name="jboss.jca:service=HibernateFactory, name=HibernateFactory">
 <depends>jboss.jca:service=RARDeployer</depends>
 <depends>jboss.jca:service=LocalTxCM,name=DataSource</depends>
 <attribute name="MapResources">
 auction/Item.hbm.xml, auction/Bid.hbm.xml
 </attribute>

Listing 2.7 Hibernate jboss-service.xml JMX deployment descriptor
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced configuration settings 57

 <attribute name="JndiName">
 java:/hibernate/HibernateFactory
 </attribute>
 <attribute name="Datasource">
 java:/comp/env/jdbc/AuctionDB
 </attribute>
 <attribute name="Dialect">
 net.sf.hibernate.dialect.PostgreSQLDialect
 </attribute>
 <attribute name="TransactionStrategy">
 net.sf.hibernate.transaction.JTATransactionFactory
 </attribute>
 <attribute name="TransactionManagerLookupStrategy">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </attribute>
 <attribute name="UserTransactionName">
 java:/UserTransaction
 </attribute>
</mbean>
</server>

The HibernateService depends on two other JMX services: service=RARDeployer
and service=LocalTxCM,name=DataSource, both in the jboss.jca service domain
name.

The Hibernate MBean may be found in the package net.sf.hibernate.jmx.
Unfortunately, lifecycle management methods like starting and stopping the JMX
service aren’t part of the JMX 1.0 specification. The methods start() and stop()
of the HibernateService are therefore specific to the JBoss application server.

NOTE If you’re interested in the advanced usage of JMX, JBoss is a good
open source starting point: All services (even the EJB container) in
JBoss are implemented as MBeans and can be managed via a supplied
console interface.

We recommend that you try to configure Hibernate programmatically (using the
Configuration object) before you try to run Hibernate as a JMX service. However,
some features (like hot-redeployment of Hibernate applications) may be possible
only with JMX, once they become available in Hibernate. Right now, the biggest
advantage of Hibernate with JMX is the automatic startup; it means you no longer
have to create a Configuration and build a SessionFactory in your application
code, but can simply access the SessionFactory through JNDI once the
HibernateService has been deployed and started.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

58 CHAPTER 2

Introducing and integrating Hibernate

2.5 Summary

In this chapter, we took a high-level look at Hibernate and its architecture after
running a simple “Hello World” example. You also saw how to configure Hiber-
nate in various environments and with various techniques, even including JMX.

The Configuration and SessionFactory interfaces are the entry points to
Hibernate for applications running in both managed and non-managed environ-
ments. Hibernate provides additional APIs, such as the Transaction interface, to
bridge the differences between environments and allow you to keep your persis-
tence code portable.

Hibernate can be integrated into almost every Java environment, be it a servlet,
an applet, or a fully managed three-tiered client/server application. The most
important elements of a Hibernate configuration are the database resources (con-
nection configuration), the transaction strategies, and, of course, the XML-based
mapping metadata.

Hibernate’s configuration interfaces have been designed to cover as many
usage scenarios as possible while still being easy to understand. Usually, a single
file named hibernate.cfg.xml and one line of code are enough to get Hibernate
up and running.

None of this is much use without some persistent classes and their XML mapping
documents. The next chapter is dedicated to writing and mapping persistent
classes. You’ll soon be able to store and retrieve persistent objects in a real applica-
tion with a nontrivial object/relational mapping.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping persistent classes
This chapter covers

■ POJO basics for rich domain models
■ Mapping POJOs with Hibernate metadata
■ Mapping class inheritance and

fine-grained models
■ An introduction to class association mappings
59

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

60 CHAPTER 3

Mapping persistent classes

The “Hello World” example in chapter 2 introduced you to Hibernate; how-
ever, it isn’t very useful for understanding the requirements of real-world appli-
cations with complex data models. For the rest of the book, we’ll use a much
more sophisticated example application—an online auction system—to demon-
strate Hibernate.

In this chapter, we start our discussion of the application by introducing a pro-
gramming model for persistent classes. Designing and implementing the persis-
tent classes is a multistep process that we’ll examine in detail.

First, you’ll learn how to identify the business entities of a problem domain. We
create a conceptual model of these entities and their attributes, called a domain
model. We implement this domain model in Java by creating a persistent class for
each entity. (We’ll spend some time exploring exactly what these Java classes
should look like.)

We then define mapping metadata to tell Hibernate how these classes and their
properties relate to database tables and columns. This involves writing or generat-
ing XML documents that are eventually deployed along with the compiled Java
classes and used by Hibernate at runtime. This discussion of mapping metadata is
the core of this chapter, along with the in-depth exploration of the mapping tech-
niques for fine-grained classes, object identity, inheritance, and associations. This
chapter therefore provides the beginnings of a solution to the first four generic
problems of ORM listed in section 1.4.2, “Generic ORM problems.”

We’ll start by introducing the example application.

3.1 The CaveatEmptor application

The CaveatEmptor online auction application demonstrates ORM techniques and
Hibernate functionality; you can download the source code for the entire working
application from the web site http://caveatemptor.hibernate.org. The applica-
tion will have a web-based user interface and run inside a servlet engine like Tom-
cat. We won’t pay much attention to the user interface; we’ll concentrate on the
data access code. In chapter 8, we discuss the changes that would be necessary if
we were to perform all business logic and data access from a separate business-tier
implemented as EJB session beans.

But, let’s start at the beginning. In order to understand the design issues
involved in ORM, let’s pretend the CaveatEmptor application doesn’t yet exist, and
that we’re building it from scratch. Our first task would be analysis.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The CaveatEmptor application 61

3.1.1 Analyzing the business domain

A software development effort begins with analysis of the problem domain
(assuming that no legacy code or legacy database already exist).

At this stage, you, with the help of problem domain experts, identify the main
entities that are relevant to the software system. Entities are usually notions under-
stood by users of the system: Payment, Customer, Order, Item, Bid, and so forth.
Some entities might be abstractions of less concrete things the user thinks about
(for example, PricingAlgorithm), but even these would usually be understandable
to the user. All these entities are found in the conceptual view of the business,
which we sometimes call a business model. Developers of object-oriented software
analyze the business model and create an object model, still at the conceptual level
(no Java code).This object model may be as simple as a mental image existing only
in the mind of the developer, or it may be as elaborate as a UML class diagram (as
in figure 3.1) created by a CASE (Computer-Aided Software Engineering) tool like
ArgoUML or TogetherJ.

This simple model contains entities that you’re bound to find in any typical auc-
tion system: Category, Item, and User. The entities and their relationships (and
perhaps their attributes) are all represented by this model of the problem domain.
We call this kind of model—an object-oriented model of entities from the problem
domain, encompassing only those entities that are of interest to the user—a domain
model. It’s an abstract view of the real world. We refer to this model when we imple-
ment our persistent Java classes.

Let’s examine the outcome of our analysis of the problem domain of the Caveat-
Emptor application.

3.1.2 The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic
equipment to airline tickets. Auctions proceed according to the “English auction”
model: Users continue to place bids on an item until the bid period for that item
expires, and the highest bidder wins.

In any store, goods are categorized by type and grouped with similar goods into
sections and onto shelves. Clearly, our auction catalog requires some kind of hier-
archy of item categories. A buyer may browse these categories or arbitrarily search
by category and item attributes. Lists of items appear in the category browser and

sells0..* 0..*Category Item User
Figure 3.1 A class diagram of a typical online auction object model

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

62 CHAPTER 3

Mapping persistent classes

search result screens. Selecting an item from a list will take the buyer to an item
detail view.

An auction consists of a sequence of bids. One particular bid is the winning bid.
User details include name, login, address, email address, and billing information.

A web of trust is an essential feature of an online auction site. The web of trust
allows users to build a reputation for trustworthiness (or untrustworthiness). Buy-
ers may create comments about sellers (and vice versa), and the comments are vis-
ible to all other users.

A high-level overview of our domain model is shown in figure 3.2. Let’s briefly
discuss some interesting features of this model.

Each item may be auctioned only once, so we don’t need to make Item distinct
from the Auction entities. Instead, we have a single auction item entity named
Item. Thus, Bid is associated directly with Item. Users can write Comments about
other users only in the context of an auction; hence the association between Item
and Comment. The Address information of a User is modeled as a separate class,
even though the User may have only one Address. We do allow the user to have
multiple BillingDetails. The various billing strategies are represented as sub-
classes of an abstract class (allowing future extension).

A Category might be nested inside another Category. This is expressed by a
recursive association, from the Category entity to itself. Note that a single Category
may have multiple child categories but at most one parent category. Each Item
belongs to at least one Category.

The entities in a domain model should encapsulate state and behavior. For
example, the User entity should define the name and address of a customer and
the logic required to calculate the shipping costs for items (to this particular cus-
tomer). Our domain model is a rich object model, with complex associations,
interactions, and inheritance relationships. An interesting and detailed discussion
of object-oriented techniques for working with domain models can be found in
Patterns of Enterprise Application Architecture [Fowler 2003] or in Domain-Driven
Design [Evans 2004].

However, in this book, we won’t have much to say about business rules or about
the behavior of our domain model. This is certainly not because we consider this an
unimportant concern; rather, this concern is mostly orthogonal to the problem of
persistence. It’s the state of our entities that is persistent. So, we concentrate our
discussion on how to best represent state in our domain model, not on how to rep-
resent behavior. For example, in this book, we aren’t interested in how tax for sold

items is calculated or how the system might approve a new user account. We’re

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The CaveatEmptor application 63

e
3

.2
P

er
si

st
en

t
cl

as
se

s
of

 t
he

 C
av

ea
tE

m
pt

or
 o

bj
ec

t
m

od
el

 a
nd

 t
he

ir
 r

el
at

io
ns

hi
ps
Fi
gu

r

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

64 CHAPTER 3

Mapping persistent classes

more interested in how the relationship between users and the items they sell is
represented and made persistent.

FAQ Can you use ORM without a domain model? We stress that object persistence
with full ORM is most suitable for applications based on a rich domain
model. If your application doesn’t implement complex business rules or
complex interactions between entities (or if you have few entities), you
may not need a domain model. Many simple and some not-so-simple
problems are perfectly suited to table-oriented solutions, where the appli-
cation is designed around the database data model instead of around an
object-oriented domain model, often with logic executed in the database
(stored procedures). However, the more complex and expressive your
domain model, the more you will benefit from using Hibernate; it shines
when dealing with the full complexity of object/relational persistence.

Now that we have a domain model, our next step is to implement it in Java. Let’s
look at some of the things we need to consider.

3.2 Implementing the domain model

Several issues typically must be addressed when you implement a domain model
in Java. For instance, how do you separate the business concerns from the cross-
cutting concerns (such as transactions and even persistence)? What kind of persis-
tence is needed: Do you need automated or transparent persistence? Do you have to
use a specific programming model to achieve this? In this section, we examine
these types of issues and how to address them in a typical Hibernate application.

Let’s start with an issue that any implementation must deal with: the separa-
tion of concerns. The domain model implementation is usually a central, orga-
nizing component; it’s reused heavily whenever you implement new application
functionality. For this reason, you should be prepared to go to some lengths to
ensure that concerns other than business aspects don’t leak into the domain
model implementation.

3.2.1 Addressing leakage of concerns

The domain model implementation is such an important piece of code that it
shouldn’t depend on other Java APIs. For example, code in the domain model
shouldn’t perform JNDI lookups or call the database via the JDBC API. This allows
you to reuse the domain model implementation virtually anywhere. Most impor-
tantly, it makes it easy to unit test the domain model (in JUnit, for example) out-

side of any application server or other managed environment.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing the domain model 65

We say that the domain model should be “concerned” only with modeling the
business domain. However, there are other concerns, such as persistence, transac-
tion management, and authorization. You shouldn’t put code that addresses these
cross-cutting concerns in the classes that implement the domain model. When these
concerns start to appear in the domain model classes, we call this an example of
leakage of concerns.

The EJB standard tries to solve the problem of leaky concerns. Indeed, if we
implemented our domain model using entity beans, the container would take care
of some concerns for us (or at least externalize those concerns to the deployment
descriptor). The EJB container prevents leakage of certain cross-cutting concerns
using interception. An EJB is a managed component, always executed inside the EJB con-
tainer. The container intercepts calls to your beans and executes its own function-
ality. For example, it might pass control to the CMP engine, which takes care of
persistence. This approach allows the container to implement the predefined
cross-cutting concerns—security, concurrency, persistence, transactions, and
remoteness—in a generic way.

Unfortunately, the EJB specification imposes many rules and restrictions on how
you must implement a domain model. This in itself is a kind of leakage of con-
cerns—in this case, the concerns of the container implementor have leaked! Hiber-
nate isn’t an application server, and it doesn’t try to implement all the cross-cutting
concerns mentioned in the EJB specification. Hibernate is a solution for just one
of these concerns: persistence. If you require declarative security and transaction
management, you should still access your domain model via a session bean, taking
advantage of the EJB container’s implementation of these concerns. Hibernate is
commonly used together with the well-known session façade J2EE pattern.

Much discussion has gone into the topic of persistence, and both Hibernate and
EJB entity beans take care of that concern. However, Hibernate offers something
that entity beans don’t: transparent persistence.

3.2.2 Transparent and automated persistence

Your application server’s CMP engine implements automated persistence. It takes
care of the tedious details of JDBC ResultSet and PreparedStatement handling. So
does Hibernate; indeed, Hibernate is a great deal more sophisticated in this
respect. But Hibernate does this in a way that is transparent to your domain model.

We use transparent to mean a complete separation of concerns between the
persistent classes of the domain model and the persistence logic itself, where

the persistent classes are unaware of—and have no dependency to—the persis-
tence mechanism.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

66 CHAPTER 3

Mapping persistent classes

Our Item class, for example, will not have any code-level dependency to any
Hibernate API. Furthermore:

■ Hibernate doesn’t require that any special superclasses or interfaces be
inherited or implemented by persistent classes. Nor are any special classes
used to implement properties or associations. Thus, transparent persistence
improves code readability, as you’ll soon see.

■ Persistent classes may be reused outside the context of persistence, in unit
tests or in the user interface (UI) tier, for example. Testability is a basic
requirement for applications with rich domain models.

■ In a system with transparent persistence, objects aren’t aware of the underly-
ing data store; they need not even be aware that they are being persisted or
retrieved. Persistence concerns are externalized to a generic persistence man-
ager interface —in the case of Hibernate, the Session and Query interfaces.

Transparent persistence fosters a degree of portability; without special interfaces,
the persistent classes are decoupled from any particular persistence solution. Our
business logic is fully reusable in any other application context. We could easily
change to another transparent persistence mechanism.

By this definition of transparent persistence, you see that certain non-automated
persistence layers are transparent (for example, the DAO pattern) because they
decouple the persistence-related code with abstract programming interfaces. Only
plain Java classes without dependencies are exposed to the business logic. Con-
versely, some automated persistence layers (including entity beans and some ORM
solutions) are non-transparent, because they require special interfaces or intrusive
programming models.

We regard transparency as required. In fact, transparent persistence should be
one of the primary goals of any ORM solution. However, no automated persistence
solution is completely transparent: Every automated persistence layer, including
Hibernate, imposes some requirements on the persistent classes. For example,
Hibernate requires that collection-valued properties be typed to an interface such
as java.util.Set or java.util.List and not to an actual implementation such as
java.util.HashSet (this is a good practice anyway). (We discuss the reasons for
this requirement in appendix B, “ORM implementation strategies.”)

You now know why the persistence mechanism should have minimal impact on
how you implement a domain model and that transparent and automated persis-
tence are required. EJB isn’t transparent, so what kind of programming model

should you use? Do you need a special programming model at all? In theory, no;

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing the domain model 67

in practice, you should adopt a disciplined, consistent programming model that is
well accepted by the Java community. Let’s discuss this programming model and
see how it works with Hibernate.

3.2.3 Writing POJOs

Developers have found entity beans to be tedious, unnatural, and unproductive. As
a reaction against entity beans, many developers started talking about Plain Old
Java Objects (POJOs), a back-to-basics approach that essentially revives JavaBeans, a
component model for UI development, and reapplies it to the business layer. (Most
developers are now using the terms POJO and JavaBean almost synonymously.)1

Hibernate works best with a domain model implemented as POJOs. The few
requirements that Hibernate imposes on your domain model are also best prac-
tices for the POJO programming model. So, most POJOs are Hibernate-compatible
without any changes. The programming model we’ll introduce is a non-intrusive
mix of JavaBean specification details, POJO best practices, and Hibernate require-
ments. A POJO declares business methods, which define behavior, and properties,
which represent state. Some properties represent associations to other POJOs.

Listing 3.1 shows a simple POJO class; it’s an implementation of the User entity
of our domain model.

public class User
 implements Serializable {

 private String username;
 private Address address;

 public User() {}

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public Address getAddress() {
 return address;
 }

1

Listing 3.1 POJO implementation of the User class

Implementation
of SerializableB

Class constructorC

d Accessor
methods
POJO is sometimes also written as Plain Ordinary Java Objects; this term was coined in 2002 by Martin
Fowler, Rebecca Parsons, and Josh Mackenzie.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

68 CHAPTER 3

Mapping persistent classes

 public void setAddress(Address address) {
 this.address = address;
 }

 public MonetaryAmount calcShippingCosts(Address fromLocation) {
 ...
 }

}

Hibernate doesn’t require that persistent classes implement Serializable. How-
ever, when objects are stored in an HttpSession or passed by value using RMI, seri-
alization is necessary. (This is very likely to happen in a Hibernate application.)

Unlike the JavaBeans specification, which requires no specific constructor, Hiber-
nate requires a constructor with no arguments for every persistent class. Hiber-
nate instantiates persistent classes using Constructor.newInstance(), a feature of
the Java reflection API. The constructor may be non-public, but it should be at
least package-visible if runtime-generated proxies will be used for performance
optimization (see chapter 4).

The properties of the POJO implement the attributes of our business entities—for
example, the username of User. Properties are usually implemented as instance
variables, together with property accessor methods: a method for retrieving the value
of the instance variable and a method for changing its value. These methods are
known as the getter and setter, respectively. Our example POJO declares getter and
setter methods for the private username instance variable and also for address.

The JavaBean specification defines the guidelines for naming these methods.
The guidelines allow generic tools like Hibernate to easily discover and manipu-
late the property value. A getter method name begins with get, followed by the
name of the property (the first letter in uppercase); a setter method name begins
with set. Getter methods for Boolean properties may begin with is instead of get.

Hibernate doesn’t require that accessor methods be declared public; it can eas-
ily use private accessors for property management.

Some getter and setter methods do something more sophisticated than simple
instance variables access (validation, for example). Trivial accessor methods are
common, however.

This POJO also defines a business method that calculates the cost of shipping an
item to a particular user (we left out the implementation of this method).

d

Business method E

B

C

D

E

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing the domain model 69

Now that you understand the value of using POJO persistent classes as the pro-
gramming model, let’s see how you handle the associations between those classes.

3.2.4 Implementing POJO associations

You use properties to express associations between POJO
classes, and you use accessor methods to navigate the object
graph at runtime. Let’s consider the associations defined by
the Category class. The first association is shown in
figure 3.3.

As with all our diagrams, we left out the association-
related attributes (parentCategory and childCategories)
because they would clutter the illustration. These attributes

and the methods that manipulate their values are called scaffolding code.
Let’s implement the scaffolding code for the one-to-many self-association of

Category:

public class Category implements Serializable {
 private String name;
 private Category parentCategory;
 private Set childCategories = new HashSet();

 public Category() { }
 ...
}

To allow bidirectional navigation of the association, we require two attributes. The
parentCategory attribute implements the single-valued end of the association and is
declared to be of type Category. The many-valued end, implemented by the child-
Categories attribute, must be of collection type. We choose a Set, since duplicates
are disallowed, and initialize the instance variable to a new instance of HashSet.

Hibernate requires interfaces for collection-typed attributes. You must use
java.util.Set rather than HashSet, for example. At runtime, Hibernate wraps the
HashSet instance with an instance of one of Hibernate’s own classes. (This special
class isn’t visible to the application code). It is good practice to program to collec-
tion interfaces, rather than concrete implementations, so this restriction shouldn’t
bother you.

We now have some private instance variables but no public interface to allow
access from business code or property management by Hibernate. Let’s add some
accessor methods to the Category class:

public String getName() {

0..*
Category

name : String

Figure 3.3 Diagram of
the Category class
with an association
 return name;
}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

70 CHAPTER 3

Mapping persistent classes

public void setName(String name) {
 this.name = name;
}

public Set getChildCategories() {
 return childCategories;
}

public void setChildCategories(Set childCategories) {
 this.childCategories = childCategories;
}

public Category getParentCategory() {
 return parentCategory;
}

public void setParentCategory(Category parentCategory) {
 this.parentCategory = parentCategory;
}

Again, these accessor methods need to be declared public only if they’re part of
the external interface of the persistent class, the public interface used by the
application logic.

The basic procedure for adding a child Category to a parent Category looks like
this:

Category aParent = new Category();
Category aChild = new Category();
aChild.setParentCategory(aParent);
aParent.getChildCategories().add(aChild);

Whenever an association is created between a parent Category and a child Cate-
gory, two actions are required:

■ The parentCategory of the child must be set, effectively breaking the associ-
ation between the child and its old parent (there can be only one parent for
any child).

■ The child must be added to the childCategories collection of the new par-
ent Category.

Hibernate doesn’t “manage” persistent associations. If you want to manip-
ulate an association, you must write exactly the same code you would write
without Hibernate. If an association is bidirectional, both sides of the rela-
tionship must be considered. Programming models like EJB entity beans
muddle this behavior by introducing container-managed relationships. The
container automatically changes the other side of a relationship if one
side is modified by the application. This is one of the reasons why code

MANAGED
RELATION-
SHIPS IN

HIBERNATE
that uses entity beans can’t be reused outside the container.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing the domain model 71

If you ever have problems understanding the behavior of associations in Hiber-
nate, just ask yourself, “What would I do without Hibernate?” Hibernate doesn’t
change the usual Java semantics.

It’s a good idea to add a convenience method to the Category class that groups
these operations, allowing reuse and helping ensure correctness:

public void addChildCategory(Category childCategory) {
 if (childCategory == null)
 throw new IllegalArgumentException("Null child category!");
 if (childCategory.getParentCategory() != null)
 childCategory.getParentCategory().getChildCategories()
 .remove(childCategory);
 childCategory.setParentCategory(this);
 childCategories.add(childCategory);

}

The addChildCategory() method not only reduces the lines of code when dealing
with Category objects, but also enforces the cardinality of the association. Errors
that arise from leaving out one of the two required actions are avoided. This kind
of grouping of operations should always be provided for associations, if possible.

Because we would like the addChildCategory() to be the only externally visible
mutator method for the child categories, we make the setChildCategories()
method private. Hibernate doesn’t care if property accessor methods are private
or public, so we can focus on good API design.

A different kind of relationship exists between Category and the Item: a bidirec-
tional many-to-many association (see figure 3.4).

In the case of a many-to-many association, both sides are implemented with col-
lection-valued attributes. Let’s add the new attributes and methods to access the
Item class to our Category class, as shown in listing 3.2.

Figure 3.4
Category and the
associated Item
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

72 CHAPTER 3

Mapping persistent classes

public class Category {

 ...
 private Set items = new HashSet();
 ...

 public Set getItems() {
 return items;
 }

 public void setItems(Set items) {
 this.items = items;
 }
}

The code for the Item class (the other end of the many-to-many association) is
similar to the code for the Category class. We add the collection attribute, the
standard accessor methods, and a method that simplifies relationship manage-
ment (you can also add this to the Category class, see listing 3.3).

public class Item {

 private String name;
 private String description;
 ...
 private Set categories = new HashSet();
 ...

 public Set getCategories() {
 return categories;
 }

 private void setCategories(Set categories) {
 this.categories = categories;
 }

 public void addCategory(Category category) {
 if (category == null)
 throw new IllegalArgumentException("Null category");
 category.getItems().add(this);
 categories.add(category);
 }
}

Listing 3.2 Category to Item scaffolding code

Listing 3.3 Item to Category scaffolding code
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing the domain model 73

The addCategory() of the Item method is similar to the addChildCategory conve-
nience method of the Category class. It’s used by a client to manipulate the rela-
tionship between Item and a Category. For the sake of readability, we won’t show
convenience methods in future code samples and assume you’ll add them accord-
ing to your own taste.

Convenience methods for association handling is however not the only way to
improve a domain model implementation. You can also add logic to your acces-
sor methods.

3.2.5 Adding logic to accessor methods

One of the reasons we like to use JavaBeans-style accessor methods is that they
provide encapsulation: The hidden internal implementation of a property can be
changed without any changes to the public interface. This allows you to abstract
the internal data structure of a class—the instance variables—from the design of
the database.

For example, if your database stores a name of the user as a single NAME column,
but your User class has firstname and lastname properties, you can add the follow-
ing persistent name property to your class:

public class User {
 private String firstname;
 private String lastname;
 ...

 public String getName() {
 return firstname + ' ' + lastname;
 }

 public void setName(String name) {
 StringTokenizer t = new StringTokenizer(name);
 firstname = t.nextToken();
 lastname = t.nextToken();
)
 ...

}

Later, you’ll see that a Hibernate custom type is probably a better way to handle
many of these kinds of situations. However, it helps to have several options.

Accessor methods can also perform validation. For instance, in the following
example, the setFirstName() method verifies that the name is capitalized:

public class User {
 private String firstname;

 ...

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

74 CHAPTER 3

Mapping persistent classes

 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname)
 throws InvalidNameException {
 if (!StringUtil.isCapitalizedName(firstname))
 throw new InvalidNameException(firstname);
 this.firstname = firstname;
)
 ...

}

However, Hibernate will later use our accessor methods to populate the state of
an object when loading the object from the database. Sometimes we would prefer
that this validation not occur when Hibernate is initializing a newly loaded object.
In that case, it might make sense to tell Hibernate to directly access the instance
variables (we map the property with access="field" in Hibernate metadata),
forcing Hibernate to bypass the setter method and access the instance variable
directly. Another issue to consider is dirty checking. Hibernate automatically detects
object state changes in order to synchronize the updated state with the database.
It’s usually completely safe to return a different object from the getter method to
the object passed by Hibernate to the setter. Hibernate will compare the objects
by value—not by object identity—to determine if the property’s persistent state
needs to be updated. For example, the following getter method won’t result in
unnecessary SQL UPDATEs:

public String getFirstname() {
 return new String(firstname);
}

However, there is one very important exception. Collections are compared by
identity!

For a property mapped as a persistent collection, you should return exactly the
same collection instance from the getter method as Hibernate passed to the setter
method. If you don’t, Hibernate will update the database, even if no update is nec-
essary, every time the session synchronizes state held in memory with the database.
This kind of code should almost always be avoided in accessor methods:

public void setNames(List namesList) {
 names = (String[]) namesList.toArray();
}

public List getNames() {

 return Arrays.asList(names);
}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 75

You can see that Hibernate doesn’t unnecessarily restrict the JavaBeans (POJO)
programming model. You’re free to implement whatever logic you need in acces-
sor methods (as long as you keep the same collection instance in both getter and
setter). If absolutely necessary, you can tell Hibernate to use a different access
strategy to read and set the state of a property (for example, direct instance field
access), as you’ll see later. This kind of transparency guarantees an independent
and reusable domain model implementation.

Now that we’ve implemented some persistent classes of our domain model, we
need to define the ORM.

3.3 Defining the mapping metadata

ORM tools require a metadata format for the application to specify the mapping
between classes and tables, properties and columns, associations and foreign keys,
Java types and SQL types. This information is called the object/relational mapping
metadata. It defines the transformation between the different data type systems
and relationship representations.

It’s our job as developers to define and maintain this metadata. We discuss vari-
ous approaches in this section.

3.3.1 Metadata in XML

Any ORM solution should provide a human-readable, easily hand-editable map-
ping format, not only a GUI mapping tool. Currently, the most popular object/
relational metadata format is XML. Mapping documents written in and with XML
are lightweight, are human readable, are easily manipulated by version-control
systems and text editors, and may be customized at deployment time (or even at
runtime, with programmatic XML generation).

But is XML-based metadata really the best approach? A certain backlash against
the overuse of XML can be seen in the Java community. Every framework and appli-
cation server seems to require its own XML descriptors.

In our view, there are three main reasons for this backlash:

■ Many existing metadata formats weren’t designed to be readable and easy
to edit by hand. In particular, a major cause of pain is the lack of sensible
defaults for attribute and element values, requiring significantly more typ-
ing than should be necessary.

■ Metadata-based solutions were often used inappropriately. Metadata is not,

by nature, more flexible or maintainable than plain Java code.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

76 CHAPTER 3

Mapping persistent classes

■ Good XML editors, especially in IDEs, aren’t as common as good Java
coding environments. Worst, and most easily fixable, a document type
declaration (DTD) often isn’t provided, preventing auto-completion and
validation. Another problem are DTDs that are too generic, where every
declaration is wrapped in a generic “extension” of “meta” element.

There is no getting around the need for text-based metadata in ORM. However,
Hibernate was designed with full awareness of the typical metadata problems. The
metadata format is extremely readable and defines useful default values. When
attribute values are missing, Hibernate uses reflection on the mapped class to
help determine the defaults. Hibernate comes with a documented and complete
DTD. Finally, IDE support for XML has improved lately, and modern IDEs provide
dynamic XML validation and even an auto-complete feature. If that’s not enough
for you, in chapter 9 we demonstrate some tools that may be used to generate
Hibernate XML mappings.

Let’s look at the way you can use XML metadata in Hibernate. We created the
Category class in the previous section; now we need to map it to the CATEGORY table
in the database. To do that, we use the XML mapping document in listing 3.4.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
 <class
 name="org.hibernate.auction.model.Category"
 table="CATEGORY">

 <id
 name="id"
 column="CATEGORY_ID"
 type="long">
 <generator class="native"/>
 </id>

 <property
 name="name"
 column="NAME"
 type="string"/>

 </class>
</hibernate-mapping>

Listing 3.4 Hibernate XML mapping of the Category class

DTD declarationB

Mapping
declaration

C
Category class mapped
to table CATEGORY

D

Identifier
mapping

E

Name property mapped
to NAME column

F

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 77

The Hibernate mapping DTD should be declared in every mapping file; it’s
required for syntactic validation of the XML.

Mappings are declared inside a <hibernate-mapping> element. You can include as
many class mappings as you like, along with certain other special declarations that
we’ll mention later in the book.

The class Category (in the package org.hibernate.auction.model) is mapped to
the table CATEGORY. Every row in this table represents one instance of type
Category.

We haven’t discussed the concept of object identity, so you may be surprised by this
mapping element. This complex topic is covered in section 3.4. To understand
this mapping, it’s sufficient to know that every record in the CATEGORY table will
have a primary key value that matches the object identity of the instance in mem-
ory. The <id> mapping element is used to define the details of object identity.

The property name of type String is mapped to a database column NAME. Note
that the type declared in the mapping is a built-in Hibernate type (string), not
the type of the Java property or the SQL column type. Think about this as the
“mapping data type.” We take a closer look at these types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”

We’ve intentionally left the association mappings out of this example. Association
mappings are more complex, so we’ll return to them in section 3.7.

TRY IT Starting Hibernate with your first persistent class—After you’ve written the
POJO code for the Category and saved its Hibernate mapping to an XML
file, you can start up Hibernate with this mapping and try some opera-
tions. However, the POJO code for Category shown earlier wasn’t com-
plete: You have to add an additional property named id of type
java.lang.Long and its accessor methods to enable Hibernate identity
management, as discussed later in this chapter. Creating the database
schema with its tables for such a simple class should be no problem for
you. Observe the log of your application to check for a successful startup
and creation of a new SessionFactory from the Configuration shown
in chapter 2.

If you can’t wait any longer, check out the save(), load(), and
delete() methods of the Session you can obtain from the SessionFac-
tory. Make sure you correctly deal with transactions; the easiest way is to
get a new Transaction object with Session.beginTransaction() and
commit it with its commit() method after you’ve made your calls. See the

B

C

D

E

F

code in section 2.1, “Hello World with Hibernate,” if you’d like to copy
some example code for your first test.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

78 CHAPTER 3

Mapping persistent classes

Although it’s possible to declare mappings for multiple classes in one mapping
file by using multiple <class> elements, the recommended practice (and the
practice expected by some Hibernate tools) is to use one mapping file per persis-
tent class. The convention is to give the file the same name as the mapped class,
appending an hbm suffix: for example, Category.hbm.xml.

Let’s discuss basic class and property mappings in Hibernate. Keep in mind that
we still need to come back later in this chapter to the problem of mapping associ-
ations between persistent classes.

3.3.2 Basic property and class mappings

A typical Hibernate property mapping defines a JavaBeans property name, a data-
base column name, and the name of a Hibernate type. It maps a JavaBean style
property to a table column. The basic declaration provides many variations and
optional settings. It’s often possible to omit the type name. So, if description is a
property of (Java) type java.lang.String, Hibernate will use the Hibernate type
string by default (we discuss the Hibernate type system in chapter 6). Hibernate
uses reflection to determine the Java type of the property. Thus, the following
mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" column="DESCRIPTION"/>

You can even omit the column name if it’s the same as the property name, ignor-
ing case. (This is one of the sensible defaults we mentioned earlier.)

For some cases you might need to use a <column> element instead of the column
attribute. The <column> element provides more flexibility; it has more optional
attributes and may appear more than once. The following two property mappings
are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" type="string">
 <column name="DESCRIPTION"/>
</property>

The <property> element (and especially the <column> element) also defines cer-
tain attributes that apply mainly to automatic database schema generation. If you
aren’t using the hbm2ddl tool (see section 9.2, “Automatic schema generation”) to
generate the database schema, you can safely omit these. However, it’s still prefer-
able to include at least the not-null attribute, since Hibernate will then be able to

report illegal null property values without going to the database:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 79

<property name="initialPrice" column="INITIAL_PRICE" not-null="true"/>

Detection of illegal null values is mainly useful for providing sensible exceptions
at development time. It isn’t intended for true data validation, which is outside
the scope of Hibernate.

Some properties don’t map to a column at all. In particular, a derived property
takes its value from an SQL expression.

Using derived properties
The value of a derived property is calculated at runtime by evaluation of an
expression. You define the expression using the formula attribute. For example,
we might map a totalIncludingTax property without having a single column with
the total price in the database:

<property name="totalIncludingTax"
 formula="TOTAL + TAX_RATE * TOTAL"
 type="big_decimal"/>

The given SQL formula is evaluated every time the entity is retrieved from the
database. The property doesn’t have a column attribute (or sub-element) and
never appears in an SQL INSERT or UPDATE, only in SELECTs. Formulas may refer
to columns of the database table, call SQL functions, and include SQL subselects.

This example, mapping a derived property of item, uses a correlated subselect
to calculate the average amount of all bids for an item:

<property
 name="averageBidAmount"
 formula="(select AVG(b.AMOUNT) from BID b
 ➾where b.ITEM_ID = ITEM_ID)"
 type="big_decimal"/>

Notice that unqualified column names refer to table columns of the class to which
the derived property belongs.

As we mentioned earlier, Hibernate doesn’t require property accessor methods
on POJO classes, if you define a new property access strategy.

Property access strategies
The access attribute allows you to specify how Hibernate should access property
values of the POJO. The default strategy, property, uses the property accessors
(get/set method pair). The field strategy uses reflection to access the instance
variable directly. The following “property” mapping doesn’t require a get/set pair:

<property name="name"

 column="NAME"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

80 CHAPTER 3

Mapping persistent classes

 type="string"
 access="field"/>

Access to properties via accessor methods is considered best practice by the Hiber-
nate community. It provides an extra level of abstraction between the Java domain
model and the data model, beyond what is already provided by Hibernate. Prop-
erties are more flexible; for example, property definitions may be overridden by
persistent subclasses.

If neither accessor methods nor direct instance variable access is appropriate,
you can define your own customized property access strategy by implementing
the interface net.sf.hibernate.property.PropertyAccessor and name it in the
access attribute.

Controlling insertion and updates
For properties that map to columns, you can control whether they appear in the
INSERT statement by using the insert attribute and whether they appear in the
UPDATE statement by using the update attribute.

The following property never has its state written to the database:

<property name="name"
 column="NAME"
 type="string"
 insert="false"
 update="false"/>

The property name of the JavaBean is therefore immutable and can be read from
the database but not modified in any way. If the complete class is immutable, set
the immutable="false" in the class mapping

In addition, the dynamic-insert attribute tells Hibernate whether to include
unmodified property values in an SQL INSERT, and the dynamic-update attribute
tells Hibernate whether to include unmodified properties in the SQL UPDATE:

<class name="org.hibernate.auction.model.User"
 dynamic-insert="true"
 dynamic-update="true">
 ...
</class>

These are both class-level settings. Enabling either of these settings will cause
Hibernate to generate some SQL at runtime, instead of using the SQL cached at
startup time. The performance cost is usually small. Furthermore, leaving out
columns in an insert (and especially in an update) can occasionally improve

performance if your tables define many columns.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 81

Using quoted SQL identifiers
By default, Hibernate doesn’t quote table and column names in the generated
SQL. This makes the SQL slightly more readable and also allows us to take advan-
tage of the fact that most SQL databases are case insensitive when comparing
unquoted identifiers. From time to time, especially in legacy databases, you’ll
encounter identifiers with strange characters or whitespace, or you may wish to
force case-sensitivity.

If you quote a table or column name with backticks in the mapping docu-
ment, Hibernate will always quote this identifier in the generated SQL. The fol-
lowing property declaration forces Hibernate to generate SQL with the quoted
column name "Item Description". Hibernate will also know that Microsoft SQL
Server needs the variation [Item Description] and that MySQL requires `Item
Description`.

<property name="description"
 column="`Item Description`"/>

There is no way, apart from quoting all table and column names in backticks, to
force Hibernate to use quoted identifiers everywhere.

Naming conventions
You’ll often encounter organizations with strict conventions for database table
and column names. Hibernate provides a feature that allows you to enforce nam-
ing standards automatically.

Suppose that all table names in CaveatEmptor should follow the pattern
CE_<table name>.

One solution is to manually specify a table attribute on all <class> and collec-
tion elements in our mapping files. This approach is time-consuming and easily
forgotten. Instead, we can implement Hibernate’s NamingStrategy interface, as in
listing 3.5

public class CENamingStrategy implements NamingStrategy {

 public String classToTableName(String className) {
 return tableName(
 StringHelper.unqualify(className).toUpperCase());
 }

 public String propertyToColumnName(String propertyName) {
 return propertyName.toUpperCase();

Listing 3.5 NamingStrategy implementation
 }

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

82 CHAPTER 3

Mapping persistent classes

 public String tableName(String tableName) {
 return "CE_" + tableName;
 }

 public String columnName(String columnName) {
 return columnName;
 }

 public String propertyToTableName(String className,
 String propertyName) {
 return classToTableName(className) + '_' +
 propertyToColumnName(propertyName);
 }

}

The classToTableName() method is called only if a <class> mapping doesn’t spec-
ify an explicit table name. The propertyToColumnName() method is called if a
property has no explicit column name. The tableName() and columnName() meth-
ods are called when an explicit name is declared.

If we enable our CENamingStrategy, this class mapping declaration

<class name="BankAccount">

will result in CE_BANKACCOUNT as the name of the table. The classToTableName()
method was called with the fully qualified class name as the argument.

However, if a table name is specified

<class name="BankAccount" table="BANK_ACCOUNT">

then CE_BANK_ACCOUNT will be the name of the table. In this case, BANK_ACCOUNT was
passed to the tableName() method.

The best feature of the NamingStrategy is the potential for dynamic behavior.
To activate a specific naming strategy, we can pass an instance to the Hibernate
Configuration at runtime:

Configuration cfg = new Configuration();
cfg.setNamingStrategy(new CENamingStrategy());
SessionFactory sessionFactory =
 cfg.configure().buildSessionFactory();

This will allow us to have multiple SessionFactory instances based on the same
mapping documents, each using a different NamingStrategy. This is extremely
useful in a multiclient installation where unique table names (but the same data
model) are required for each client.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 83

However, a better way to handle this kind of requirement is to use the concept
of an SQL schema (a kind of namespace).

SQL schemas
You can specify a default schema using the hibernate.default_schema configura-
tion option. Alternatively, you can specify a schema in the mapping document. A
schema may be specified for a particular class or collection mapping:

<hibernate-mapping>
 <class
 name="org.hibernate.auction.model.Category"
 table="CATEGORY"
 schema="AUCTION">
 ...
 </class>
</hibernate-mapping>

It can even be declared for the whole document:

<hibernate-mapping
 default-schema="AUCTION">
 ..
</hibernate-mapping>

This isn’t the only thing the root <hibernate-mapping> element is useful for.

Declaring class names
All the persistent classes of the CaveatEmptor application are declared in the Java
package org.hibernate.auction.model. It would become tedious to specify this
package name every time we named a class in our mapping documents.

Let’s reconsider our mapping for the Category class (the file Cate-

gory.hbm.xml):

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
 <class
 name="org.hibernate.auction.model.Category"
 table="CATEGORY">
 ...
 </class>
</hibernate-mapping>
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

84 CHAPTER 3

Mapping persistent classes

We don’t want to repeat the full package name whenever this or any other class is
named in an association, subclass, or component mapping. So, instead, we’ll spec-
ify a package:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping
 package="org.hibernate.auction.model">
 <class
 name="Category"
 table="CATEGORY">
 ...
 </class>
</hibernate-mapping>

Now all unqualified class names that appear in this mapping document will be
prefixed with the declared package name. We assume this setting in all mapping
examples in this book.

If writing XML files by hand (using the DTD for auto-completion, of course) still
seems like too much work, attribute-oriented programming might be a good choice.
Hibernate mapping files can be automatically generated from attributes directly
embedded in the Java source code.

3.3.3 Attribute-oriented programming

The innovative XDoclet project has brought the notion of attribute-oriented pro-
gramming to Java. Until JDK 1.5, the Java language had no support for annota-
tions; so XDoclet leverages the Javadoc tag format (@attribute) to specify class-,
field-, or method-level metadata attributes. (There is a book about XDoclet from
Manning Publications: XDoclet in Action [Walls/Richards, 2004].)

XDoclet is implemented as an Ant task that generates code or XML metadata as
part of the build process. Creating the Hibernate XML mapping document with
XDoclet is straightforward; instead of writing it by hand, we mark up the Java
source code of our persistent class with custom Javadoc tags, as shown in listing 3.6.

/**
 * The Category class of the CaveatEmptor auction site domain model.
 *
 * @hibernate.class
 * table="CATEGORY"

Listing 3.6 Using XDoclet tags to mark up Java properties with mapping metadata
 */

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Defining the mapping metadata 85

public class Category {
 ...

 /**
 * @hibernate.id
 * generator-class="native"
 * column="CATEGORY_ID"
 */
 public Long getId() {
 return id;
 }

 ...

 /**
 * @hibernate.property
 */
 public String getName() {
 return name;
 }

 ...

}

With the annotated class in place and an Ant task ready, we can automatically gen-
erate the same XML document shown in the previous section (listing 3.4).

The downside to XDoclet is the requirement for another build step. Most large
Java projects are using Ant already, so this is usually a non-issue. Arguably, XDoclet
mappings are less configurable at deployment time. However, nothing is stopping
you from hand-editing the generated XML before deployment, so this probably
isn’t a significant objection. Finally, support for XDoclet tag validation may not be
available in your development environment. However, JetBrains IntelliJ IDEA and
Eclipse both support at least auto-completion of tag names. (We look at the use of
XDoclet with Hibernate in chapter 9, section 9.5, “XDoclet.”)

NOTE XDoclet isn’t a standard approach to attribute-oriented metadata. A new
Java specification, JSR 175, defines annotations as extensions to the Java
language. JSR 175 is already implemented in JDK 1.5, so projects like
XDoclet and Hibernate will probably provide support for JSR 175 annota-
tions in the near future.

Both of the approaches we have described so far, XML and XDoclet attributes,
assume that all mapping information is known at deployment time. Suppose that
some information isn’t known before the application starts. Can you programmat-

ically manipulate the mapping metadata at runtime?

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

86 CHAPTER 3

Mapping persistent classes

3.3.4 Manipulating metadata at runtime

It’s sometimes useful for an application to browse, manipulate, or build new map-
pings at runtime. XML APIs like DOM, dom4j, and JDOM allow direct runtime
manipulation of XML documents. So, you could create or manipulate an XML
document at runtime, before feeding it to the Configuration object.

However, Hibernate also exposes a configuration-time metamodel. The meta-
model contains all the information declared in your XML mapping documents.
Direct programmatic manipulation of this metamodel is sometimes useful, espe-
cially for applications that allow for extension by user-written code.

For example, the following code adds a new property, motto, to the User class
mapping:

// Get the existing mapping for User from Configuration
PersistentClass userMapping = cfg.getClassMapping(User.class);

// Define a new column for the USER table
Column column = new Column();
column.setType(Hibernate.STRING);
column.setName("MOTTO");
column.setNullable(false);
column.setUnique(true);
userMapping.getTable().addColumn(column);

// Wrap the column in a Value
SimpleValue value = new SimpleValue();
value.setTable(userMapping.getTable());
value.addColumn(column);
value.setType(Hibernate.STRING);

// Define a new property of the User class
Property prop = new Property();
prop.setValue(value);
prop.setName("motto");
userMapping.addProperty(prop);

// Build a new session factory, using the new mapping
SessionFactory sf = cfg.buildSessionFactory();

A PersistentClass object represents the metamodel for a single persistent class;
we retrieve it from the Configuration. Column, SimpleValue, and Property are all
classes of the Hibernate metamodel and are available in the package
net.sf.hibernate.mapping. Keep in mind that adding a property to an existing
persistent class mapping as shown here is easy, but programmatically creating a
new mapping for a previously unmapped class is quite a bit more involved.

Once a SessionFactory is created, its mappings are immutable. In fact, the Ses-

sionFactory uses a different metamodel internally than the one used at configura-

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding object identity 87

tion time. There is no way to get back to the original Configuration from the
SessionFactory or Session. However, the application may read the SessionFac-
tory’s metamodel by calling getClassMetadata() or getCollectionMetadata().
For example:

Category category = ...;
ClassMetadata meta = sessionFactory.getClassMetadata(Category.class);
String[] metaPropertyNames = meta.getPropertyNames();
Object[] propertyValues = meta.getPropertyValues(category);

This code snippet retrieves the names of persistent properties of the Category
class and the values of those properties for a particular instance. This helps you
write generic code. For example, you might use this feature to label UI compo-
nents or improve log output.

Now let’s turn to a special mapping element you’ve seen in most of our previous
examples: the identifier property mapping. We’ll begin by discussing the notion of
object identity.

3.4 Understanding object identity

It’s vital to understand the difference between object identity and object equality
before we discuss terms like database identity and how Hibernate manages identity.
We need these concepts if we want to finish mapping our CaveatEmptor persistent
classes and their associations with Hibernate.

3.4.1 Identity versus equality

Java developers understand the difference between Java object identity and equality.
Object identity, ==, is a notion defined by the Java virtual machine. Two object ref-
erences are identical if they point to the same memory location.

On the other hand, object equality is a notion defined by classes that implement
the equals() method, sometimes also referred to as equivalence. Equivalence means
that two different (non-identical) objects have the same value. Two different
instances of String are equal if they represent the same sequence of characters,
even though they each have their own location in the memory space of the virtual
machine. (We admit that this is not entirely true for Strings, but you get the idea.)

Persistence complicates this picture. With object/relational persistence, a per-
sistent object is an in-memory representation of a particular row of a database
table. So, along with Java identity (memory location) and object equality, we pick
up database identity (location in the persistent data store). We now have three meth-

ods for identifying objects:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

88 CHAPTER 3

Mapping persistent classes

■ Object identity—Objects are identical if they occupy the same memory loca-
tion in the JVM. This can be checked by using the == operator.

■ Object equality—Objects are equal if they have the same value, as defined by the
equals(Object o) method. Classes that don’t explicitly override this method
inherit the implementation defined by java.lang.Object, which compares
object identity.

■ Database identity—Objects stored in a relational database are identical if they
represent the same row or, equivalently, share the same table and primary key
value.

You need to understand how database identity relates to object identity in Hibernate.

3.4.2 Database identity with Hibernate

Hibernate exposes database identity to the application in two ways:

■ The value of the identifier property of a persistent instance

■ The value returned by Session.getIdentifier(Object o)

The identifier property is special: Its value is the primary key value of the database
row represented by the persistent instance. We don’t usually show the identifier
property in our domain model—it’s a persistence-related concern, not part of our
business problem. In our examples, the identifier property is always named id. So
if myCategory is an instance of Category, calling myCategory.getId() returns the
primary key value of the row represented by myCategory in the database.

Should you make the accessor methods for the identifier property private scope
or public? Well, database identifiers are often used by the application as a conve-
nient handle to a particular instance, even outside the persistence layer. For exam-
ple, web applications often display the results of a search screen to the user as a list
of summary information. When the user selects a particular element, the applica-
tion might need to retrieve the selected object. It’s common to use a lookup by
identifier for this purpose—you’ve probably already used identifiers this way, even
in applications using direct JDBC. It’s therefore usually appropriate to fully expose
the database identity with a public identifier property accessor.

On the other hand, we usually declare the setId() method private and let
Hibernate generate and set the identifier value. The exceptions to this rule are
classes with natural keys, where the value of the identifier is assigned by the appli-
cation before the object is made persistent, instead of being generated by Hiber-

nate. (We discuss natural keys in the next section.) Hibernate doesn’t allow you to
change the identifier value of a persistent instance after it’s first assigned.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding object identity 89

Remember, part of the definition of a primary key is that its value should never
change. Let’s implement an identifier property for the Category class:

public class Category {
 private Long id;
 ...
 public Long getId() {
 return this.id;
 }

 private void setId(Long id) {
 this.id = id;
 }
 ...
}

The property type depends on the primary key type of the CATEGORY table and the
Hibernate mapping type. This information is determined by the <id> element in
the mapping document:

<class name="Category" table="CATEGORY">
 <id name="id" column="CATEGORY_ID" type="long">
 <generator class="native"/>
 </id>

 ...
</class>

The identifier property is mapped to the primary key column CATEGORY_ID of the
table CATEGORY. The Hibernate type for this property is long, which maps to a BIG-
INT column type in most databases and which has also been chosen to match the
type of the identity value produced by the native identifier generator. (We discuss
identifier generation strategies in the next section.) So, in addition to operations
for testing Java object identity (a == b) and object equality (a.equals(b)), you
may now use a.getId().equals(b.getId()) to test database identity.

An alternative approach to handling database identity is to not implement any
identifier property, and let Hibernate manage database identity internally. In this
case, you omit the name attribute in the mapping declaration:

<id column="CATEGORY_ID">
 <generator class="native"/>
</id>

Hibernate will now manage the identifier values internally. You may obtain the
identifier value of a persistent instance as follows:

Long catId = (Long) session.getIdentifier(category);
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

90 CHAPTER 3

Mapping persistent classes

This technique has a serious drawback: You can no longer use Hibernate to
manipulate detached objects effectively (see chapter 4, section 4.1.6, “Outside the
identity scope”). So, you should always use identifier properties in Hibernate. (If
you don’t like them being visible to the rest of your application, make the accessor
methods private.)

Using database identifiers in Hibernate is easy and straightforward. Choosing a
good primary key (and key generation strategy) might be more difficult. We dis-
cuss these issues next.

3.4.3 Choosing primary keys

You have to tell Hibernate about your preferred primary key generation strategy.
But first, let’s define primary key.

The candidate key is a column or set of columns that uniquely identifies a specific
row of the table. A candidate key must satisfy the following properties:

■ The value or values are never null.

■ Each row has a unique value or values.

■ The value or values of a particular row never change.

For a given table, several columns or combinations of columns might satisfy these
properties. If a table has only one identifying attribute, it is by definition the pri-
mary key. If there are multiple candidate keys, you need to choose between them
(candidate keys not chosen as the primary key should be declared as unique keys
in the database). If there are no unique columns or unique combinations of col-
umns, and hence no candidate keys, then the table is by definition not a relation
as defined by the relational model (it permits duplicate rows), and you should
rethink your data model.

Many legacy SQL data models use natural primary keys. A natural key is a key with
business meaning: an attribute or combination of attributes that is unique by virtue
of its business semantics. Examples of natural keys might be a U.S. Social Security
Number or Australian Tax File Number. Distinguishing natural keys is simple: If a
candidate key attribute has meaning outside the database context, it’s a natural
key, whether or not it’s automatically generated.

Experience has shown that natural keys almost always cause problems in the
long run. A good primary key must be unique, constant, and required (never null
or unknown). Very few entity attributes satisfy these requirements, and some that
do aren’t efficiently indexable by SQL databases. In addition, you should make

absolutely certain that a candidate key definition could never change throughout

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding object identity 91

the lifetime of the database before promoting it to a primary key. Changing the
definition of a primary key and all foreign keys that refer to it is a frustrating task.

For these reasons, we strongly recommend that new applications use synthetic
identifiers (also called surrogate keys). Surrogate keys have no business meaning—
they are unique values generated by the database or application. There are a num-
ber of well-known approaches to surrogate key generation.

Hibernate has several built-in identifier generation strategies. We list the most
useful options in table 3.1.

You aren’t limited to these built-in strategies; you may create your own identifier
generator by implementing Hibernate’s IdentifierGenerator interface. It’s even
possible to mix identifier generators for persistent classes in a single domain model,
but for non-legacy data we recommend using the same generator for all classes.

The special assigned identifier generator strategy is most useful for entities with

Table 3.1 Hibernate’s built-in identifier generator modules

 Generator name Description

native The native identity generator picks other identity generators like identity,
sequence, or hilo depending on the capabilities of the underlying database.

identity This generator supports identity columns in DB2, MySQL, MS SQL Server, Sybase,
HSQLDB, Informix, and HypersonicSQL. The returned identifier is of type long,
short, or int.

sequence A sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi, Firebird, or a generator in
InterBase is used. The returned identifier is of type long, short, or int.

increment At Hibernate startup, this generator reads the maximum primary key column value
of the table and increments the value by one each time a new row is inserted. The
generated identifier is of type long, short, or int. This generator is especially
efficient if the single-server Hibernate application has exclusive access to the
database but shouldn’t be used in any other scenario.

hilo A high/low algorithm is an efficient way to generate identifiers of type long,
short, or int, given a table and column (by default hibernate_unique_key
and next_hi, respectively) as a source of hi values. The high/low algorithm gen-
erates identifiers that are unique only for a particular database. See [Ambler
2002] for more information about the high/low approach to unique identifiers.

uuid.hex This generator uses a 128-bit UUID (an algorithm that generates identifiers of type
string, unique within a network). The IP address is used in combination with a
unique timestamp. The UUID is encoded as a string of hexadecimal digits of length
32. This generation strategy isn’t popular, since CHAR primary keys consume more
database space than numeric keys and are marginally slower.
natural primary keys. This strategy lets the application assign identifier values by

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

92 CHAPTER 3

Mapping persistent classes

setting the identifier property before making the object persistent by calling
save(). This strategy has some serious disadvantages when you’re working with
detached objects and transitive persistence (both of these concepts are discussed
in the next chapter). Don’t use assigned identifiers if you can avoid them; it’s
much easier to use a surrogate primary key generated by one of the strategies listed
in table 3.1.

For legacy data, the picture is more complicated. In this case, we’re often stuck
with natural keys and especially composite keys (natural keys composed of multiple
table columns). Because composite identifiers can be more difficult to work with,
we only discuss them in the context of chapter 8, section 8.3.1, “Legacy schemas
and composite keys.”

The next step is to add identifier properties to the classes of the CaveatEmptor
application. Do all persistent classes have their own database identity? To answer
this question, we must explore the distinction between entities and value types in
Hibernate. These concepts are required for fine-grained object modeling.

3.5 Fine-grained object models

A major objective of the Hibernate project is support for fine-grained object mod-
els, which we isolated as the most important requirement for a rich domain
model. It’s one reason we’ve chosen POJOs.

In crude terms, fine-grained means “more classes than tables.” For example, a
user might have both a billing address and a home address. In the database, we
might have a single USER table with the columns BILLING_STREET, BILLING_CITY,
and BILLING_ZIPCODE along with HOME_STREET, HOME_CITY, and HOME_ZIPCODE.
There are good reasons to use this somewhat denormalized relational model (per-
formance, for one).

In our object model, we could use the same approach, representing the two
addresses as six string-valued properties of the User class. But we would much
rather model this using an Address class, where User has the billingAddress and
homeAddress properties.

This object model achieves improved cohesion and greater code reuse and is
more understandable. In the past, many ORM solutions haven’t provided good sup-
port for this kind of mapping.

Hibernate emphasizes the usefulness of fine-grained classes for implementing
type-safety and behavior. For example, many people would model an email address
as a string-valued property of User. We suggest that a more sophisticated approach
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Fine-grained object models 93

is to define an actual EmailAddress class that could add higher level semantics and
behavior. For example, it might provide a sendEmail() method.

3.5.1 Entity and value types

This leads us to a distinction of central importance in ORM. In Java, all classes are
of equal standing: All objects have their own identity and lifecycle, and all class
instances are passed by reference. Only primitive types are passed by value.

We’re advocating a design in which there are more persistent classes than tables.
One row represents multiple objects. Because database identity is implemented by
primary key value, some persistent objects won’t have their own identity. In effect,
the persistence mechanism implements pass-by-value semantics for some classes.
One of the objects represented in the row has its own identity, and others depend
on that.

Hibernate makes the following essential distinction:

■ An object of entity type has its own database identity (primary key value). An
object reference to an entity is persisted as a reference in the database (a
foreign key value). An entity has its own lifecycle; it may exist independently
of any other entity.

■ An object of value type has no database identity; it belongs to an entity, and
its persistent state is embedded in the table row of the owning entity (except
in the case of collections, which are also considered value types, as you’ll see
in chapter 6). Value types don’t have identifiers or identifier properties.
The lifespan of a value-type instance is bounded by the lifespan of the own-
ing entity.

The most obvious value types are simple objects like Strings and Integers. Hiber-
nate also lets you treat a user-defined class as a value type, as you’ll see next. (We
also come back to this important concept in chapter 6, section 6.1, “Understand-
ing the Hibernate type system.”)

3.5.2 Using components

So far, the classes of our object model have all been entity classes with their own
lifecycle and identity. The User class, however, has a special kind of association
with the Address class, as shown in figure 3.5.

In object modeling terms, this association is a kind of aggregation—a “part of”
relationship. Aggregation is a strong form of association: It has additional seman-

tics with regard to the lifecycle of objects. In our case, we have an even stronger

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

94 CHAPTER 3

Mapping persistent classes

form, composition, where the lifecycle of the part is dependent on the lifecycle of
the whole.

Object modeling experts and UML designers will claim that there is no differ-
ence between this composition and other weaker styles of association when it
comes to the Java implementation. But in the context of ORM, there is a big differ-
ence: a composed class is often a candidate value type.

We now map Address as a value type and User as an entity. Does this affect the
implementation of our POJO classes?

Java itself has no concept of composition—a class or attribute can’t be marked
as a component or composition. The only difference is the object identifier: A com-
ponent has no identity, hence the persistent component class requires no identi-
fier property or identifier mapping. The composition between User and Address is
a metadata-level notion; we only have to tell Hibernate that the Address is a value
type in the mapping document.

Hibernate uses the term component for a user-defined class that is persisted to
the same table as the owning entity, as shown in listing 3.7. (The use of the word
component here has nothing to do with the architecture-level concept, as in soft-
ware component.)

 <class
 name="User"
 table="USER">

 <id
 name="id"
 column="USER_ID"
 type="long">
 <generator class="native"/>
 </id>

Listing 3.7 Mapping the User class with a component Address

Address
street : String
zipCode : String
city : String

User
firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
created : Date

billing

home

Figure 3.5
Relationships between User and
Address using composition
 <property

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Fine-grained object models 95

 name="username"
 column="USERNAME"
 type="string"/>

 <component
 name="homeAddress"
 class="Address">

 <property name="street"
 type="string"
 column="HOME_STREET"
 notnull="true"/>
 <property name="city"
 type="string"
 column="HOME_CITY"
 not-null="true"/>
 <property name="zipcode"
 type="short"
 column="HOME_ZIPCODE"
 not-null="true"/>

 </component>

 <component
 name="billingAddress"
 class="Address">

 <property name="street"
 type="string"
 column="BILLING_STREET"
 notnull="true"/>
 <property name="city"
 type="string"
 column="BILLING_CITY"
 not-null="true"/>
 <property name="zipcode"
 type="short"
 column="BILLING_ZIPCODE"
 not-null="true"/>

 </component>

 ...

</class>

We declare the persistent attributes of Address inside the <component> element.
The property of the User class is named homeAddress.

We reuse the same component class to map another property of this type to the

Declare persistent
attributesB

Reuse
component classC

B

C

same table.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

96 CHAPTER 3

Mapping persistent classes

Figure 3.6 shows how the attributes of the
Address class are persisted to the same table as
the User entity.

Notice that in this example, we have modeled
the composition association as unidirectional. We
can’t navigate from Address to User. Hibernate
supports both unidirectional and bidirectional
compositions; however, unidirectional composi-
tion is far more common. Here’s an example of a
bidirectional mapping:

<component
 name="homeAddress"
 class="Address">
 <parent name="user"/>
 <property name="street" type="string" column="HOME_STREET"/>
 <property name="city" type="string" column="HOME_CITY"/>
 <property name="zipcode" type="short" column="HOME_ZIPCODE"/>
</component>

The <parent> element maps a property of type User to the owning entity, in this
example, the property is named user. We then call Address.getUser() to navigate
in the other direction.

A Hibernate component may own other components and even associations to
other entities. This flexibility is the foundation of Hibernate’s support for fine-
grained object models. (We’ll discuss various component mappings in chapter 6.)

However, there are two important limitations to classes mapped as components:

■ Shared references aren’t possible. The component Address doesn’t have its
own database identity (primary key) and so a particular Address object can’t
be referred to by any object other than the containing instance of User.

■ There is no elegant way to represent a null reference to an Address. In lieu
of an elegant approach, Hibernate represents null components as null val-
ues in all mapped columns of the component. This means that if you store a
component object with all null property values, Hibernate will return a null
component when the owning entity object is retrieved from the database.

Support for fine-grained classes isn’t the only ingredient of a rich domain model.
Class inheritance and polymorphism are defining features of object-oriented
models.

Figure 3.6 Table attributes of User
with Address component
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping class inheritance 97

3.6 Mapping class inheritance

A simple strategy for mapping classes to database tables might be “one table for
every class.” This approach sounds simple, and it works well until you encoun-
ter inheritance.

Inheritance is the most visible feature of the structural mismatch between the
object-oriented and relational worlds. Object-oriented systems model both “is a”
and “has a” relationships. SQL-based models provide only “has a” relationships
between entities.

There are three different approaches to representing an inheritance hierarchy.
These were catalogued by Scott Ambler [Ambler 2002] in his widely read paper
“Mapping Objects to Relational Databases”:

■ Table per concrete class—Discard polymorphism and inheritance relationships
completely from the relational model

■ Table per class hierarchy—Enable polymorphism by denormalizing the rela-
tional model and using a type discriminator column to hold type information

■ Table per subclass—Represent “is a” (inheritance) relationships as “has a”
(foreign key) relationships

This section takes a top down approach; it assumes that we’re starting with a
domain model and trying to derive a new SQL schema. However, the mapping
strategies described are just as relevant if we’re working bottom up, starting with
existing database tables.

3.6.1 Table per concrete class

Suppose we stick with the simplest approach: We could use exactly one table for
each (non-abstract) class. All properties of a class, including inherited properties,
could be mapped to columns of this table, as shown in figure 3.7.

The main problem with this approach is that it doesn’t support polymorphic
associations very well. In the database, associations are usually represented as for-
eign key relationships. In figure 3.7, if the subclasses are all mapped to different
tables, a polymorphic association to their superclass (abstract BillingDetails in
this example) can’t be represented as a simple foreign key relationship. This would
be problematic in our domain model, because BillingDetails is associated with
User; hence both tables would need a foreign key reference to the USER table.

Polymorphic queries (queries that return objects of all classes that match the inter-

face of the queried class) are also problematic. A query against the superclass must

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

98 CHAPTER 3

Mapping persistent classes

be executed as several SQL SELECTs, one for each concrete subclass. We might be
able to use an SQL UNION to improve performance by avoiding multiple round trips
to the database. However, unions are somewhat nonportable and otherwise diffi-
cult to work with. Hibernate doesn’t support the use of unions at the time of writ-
ing, and will always use multiple SQL queries. For a query against the
BillingDetails class (for example, restricting to a certain date of creation), Hiber-
nate would use the following SQL:

select CREDIT_CARD_ID, OWNER, NUMBER, CREATED, TYPE, ...
from CREDIT_CARD
where CREATED = ?

select BANK_ACCOUNT_ID, OWNER, NUMBER, CREATED, BANK_NAME, ...
from BANK_ACCOUNT
where CREATED = ?

Notice that a separate query is needed for each concrete subclass.
On the other hand, queries against the concrete classes are trivial and perform

well:

select CREDIT_CARD_ID, TYPE, EXP_MONTH, EXP_YEAR
 from CREDIT_CARD where CREATED = ?

(Note that here, and in other places in this book, we show SQL that is conceptually
identical to the SQL executed by Hibernate. The actual SQL might look superfi-
cially different.)

A further conceptual problem with this mapping strategy is that several different
columns of different tables share the same semantics. This makes schema evolu-

Figure 3.7 Mapping a composition bidirectional
tion more complex. For example, a change to a superclass property type results in

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping class inheritance 99

changes to multiple columns. It also makes it much more difficult to implement
database integrity constraints that apply to all subclasses.

This mapping strategy doesn’t require any special Hibernate mapping declara-
tion: Simply create a new <class> declaration for each concrete class, specifying a
different table attribute for each. We recommend this approach (only) for the top
level of your class hierarchy, where polymorphism isn’t usually required.

3.6.2 Table per class hierarchy

Alternatively, an entire class hierarchy could be mapped to a single table. This
table would include columns for all properties of all classes in the hierarchy. The
concrete subclass represented by a particular row is identified by the value of a
type discriminator column. This approach is shown in figure 3.8.

This mapping strategy is a winner in terms of both performance and simplicity.
It’s the best-performing way to represent polymorphism—both polymorphic and
nonpolymorphic queries perform well—and it’s even easy to implement by hand.
Ad hoc reporting is possible without complex joins or unions, and schema evolu-
tion is straightforward.

There is one major problem: Columns for properties declared by subclasses
must be declared to be nullable. If your subclasses each define several non-nullable
properties, the loss of NOT NULL constraints could be a serious problem from the
point of view of data integrity.

In Hibernate, we use the <subclass> element to indicate a table-per-class hier-
archy mapping, as in listing 3.8.

<<Table>>
BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>
BILLING_DETAILS_TYPE <<Discriminator>>
OWNER
NUMBER
CREATED
CREDIT_CARD_TYPE
CREDIT_CARD_EXP_MONTH
CREDIT_CARD_EXP_YEAR
BANK_ACCOUNT_BANK_NAME
BANK_ACCOUNT_BANK_SWIFT

Figure 3.8 Table per class hierarchy mapping
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

100 CHAPTER 3

Mapping persistent classes

<hibernate-mapping>
 <class
 name="BillingDetails"
 table="BILLING_DETAILS" discriminator-value="BD">

 <id
 name="id"
 column="BILLING_DETAILS_ID"
 type="long">
 <generator class="native"/>
 </id>

 <discriminator
 column="BILLING_DETAILS_TYPE"
 type="string"/>

 <property
 name="name"
 column="OWNER"
 type="string"/>

 ...

 <subclass
 name="CreditCard"
 discriminator-value="CC">

 <property
 name="type"
 column="CREDIT_CARD_TYPE"/>
 ...

 </subclass>

 ...

 </class>
</hibernate-mapping>

The root class BusinessDetails of the inheritance hierarchy is mapped to the
table BUSINESS_DETAILS.

We have to use a special column to distinguish between persistent classes: the dis-
criminator. This isn’t a property of the persistent class; it’s used internally by Hiber-
nate. The column name is BILLING_DETAILS_TYPE, and the values will be strings—
in this case, "CC" or "BA". Hibernate will automatically set and retrieve the dis-
criminator values.

Listing 3.8 Hibernate <subclass> mapping

Root class, mapped to tableB

Discriminator columnC

Property mappingsD

CreditCard subclassE

B

C

Properties of the superclass are mapped as always, with a <property> element.D

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping class inheritance 101

Every subclass has its own <subclass> element. Properties of a subclass are
mapped to columns in the BILLING_DETAILS table. Remember that not-null con-
straints aren’t allowed, because a CreditCard instance won’t have a bankSwift
property and the BANK_ACCOUNT_BANK_SWIFT field must be null for that row.

The <subclass> element can in turn contain other <subclass> elements, until
the whole hierarchy is mapped to the table. A <subclass> element can’t contain a
<joined-subclass> element. (The <joined-subclass> element is used in the spec-
ification of the third mapping option: one table per subclass. This option is dis-
cussed in the next section.) The mapping strategy can’t be switched anymore at
this point.

Hibernate would use the following SQL when querying the BillingDetails class:

select BILLING_DETAILS_ID, BILLING_DETAILS_TYPE,
 OWNER, ..., CREDIT_CARD_TYPE,
from BILLING_DETAILS
where CREATED = ?

To query the CreditCard subclass, Hibernate would use a condition on the dis-
criminator:

select BILLING_DETAILS_ID,
 CREDIT_CARD_TYPE, CREDIT_CARD_EXP_MONTH, ...
from BILLING_DETAILS
where BILLING_DETAILS_TYPE='CC' and CREATED = ?

How could it be any simpler than that?

3.6.3 Table per subclass

The third option is to represent inheritance relationships as relational foreign key
associations. Every subclass that declares persistent properties—including abstract
classes and even interfaces—has its own table.

Unlike the strategy that uses a table per concrete class, the table here contains
columns only for each non-inherited property (each property declared by the sub-
class itself) along with a primary key that is also a foreign key of the superclass table.
This approach is shown in figure 3.9.

If an instance of the CreditCard subclass is made persistent, the values of prop-
erties declared by the BillingDetails superclass are persisted to a new row of the
BILLING_DETAILS table. Only the values of properties declared by the subclass are
persisted to the new row of the CREDIT_CARD table. The two rows are linked together
by their shared primary key value. Later, the subclass instance may be retrieved

E

from the database by joining the subclass table with the superclass table.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

102 CHAPTER 3

Mapping persistent classes

The primary advantage of this strategy is that the relational model is completely
normalized. Schema evolution and integrity constraint definition are straightfor-
ward. A polymorphic association to a particular subclass may be represented as a
foreign key pointing to the table of that subclass.

In Hibernate, we use the <joined-subclass> element to indicate a table-per-sub-
class mapping (see listing 3.9).

<?xml version="1.0"?><hibernate-mapping>
 <class
 name="BillingDetails"

Listing 3.9 Hibernate <joined-subclass> mapping

CreditCard
type : int
expMonth : String
expYear : String

BankAccount
bankName: String
bankSwift: String

BillingDetails
owner : String
number: String
created : Date

Table per Subclass

<<Table>>
CREDIT_CARD

CREDIT_CARD_ID <<PK>> <<FK>>
TYPE
EXP_MONTH
EXP_YEAR

<<Table>>
BANK_ACCOUNT

BANK_ACCOUNT_ID <<PK>> <<FK>>
BANK_NAME
BANK_SWIFT

<<Table>>
BILLING_DETAILS

BILLING_DETAILS_ID <<PK>>
OWNER
NUMBER
CREATED

Figure 3.9 Table per subclass mapping

BillingDetails root class, B

 table="BILLING_DETAILS"> mapped to

BILLING_DETAILS table

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping class inheritance 103

 <id
 name="id"
 column="BILLING_DETAILS_ID"
 type="long">
 <generator class="native"/>
 </id>

 <property
 name="owner"
 column="OWNER"
 type="string"/>

 ...

 <joined-subclass
 name="CreditCard"
 table="CREDIT_CARD">

 <key column="CREDIT_CARD_ID">

 <property
 name="type"
 column="TYPE"/>

 ...

 </joined-subclass>

 ...

 </class>
</hibernate-mapping>

Again, the root class BillingDetails is mapped to the table BILLING_DETAILS.
Note that no discriminator is required with this strategy.

The new <joined-subclass> element is used to map a subclass to a new table (in
this example, CREDIT_CARD). All properties declared in the joined subclass will be
mapped to this table. Note that we intentionally left out the mapping example for
BankAccount, which is similar to CreditCard.

A primary key is required for the CREDIT_CARD table; it will also have a foreign key
constraint to the primary key of the BILLING_DETAILS table. A CreditCard object
lookup will require a join of both tables.

A <joined-subclass> element may contain other <joined-subclass> elements
but not a <subclass> element. Hibernate doesn’t support mixing of these two
mapping strategies.

<joined-subclass>
element

C

Primary/foreign keyD

B

C

D

Hibernate will use an outer join when querying the BillingDetails class:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

104 CHAPTER 3

Mapping persistent classes

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.NUMER, BD.CREATED,
 CC.TYPE, ..., BA.BANK_SWIFT, ...
 case
 when CC.CREDIT_CARD_ID is not null then 1
 when BA.BANK_ACCOUNT_ID is not null then 2
 when BD.BILLING_DETAILS_ID is not null then 0
 end as TYPE
from BILLING_DETAILS BD
 left join CREDIT_CARD CC on
 BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
 left join BANK_ACCOUNT BA on
 BD.BILLING_DETAILS_ID = BA.BANK_ACCOUNT_ID
where BD.CREATED = ?

The SQL case statement uses the existence (or nonexistence) of rows in the sub-
class tables CREDIT_CARD and BANK_ACCOUNT to determine the concrete subclass for
a particular row of the BILLING_DETAILS table.

To narrow the query to the subclass, Hibernate uses an inner join instead:

select BD.BILLING_DETAILS_ID, BD.OWNER, BD.CREATED, CC.TYPE, ...
from CREDIT_CARD CC
 inner join BILLING_DETAILS BD on
 BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
where CC.CREATED = ?

As you can see, this mapping strategy is more difficult to implement by hand—
even ad hoc reporting will be more complex. This is an important consideration if
you plan to mix Hibernate code with handwritten SQL/JDBC. (For ad hoc report-
ing, database views provide a way to offset the complexity of the table-per-subclass
strategy. A view may be used to transform the table-per-subclass model into the
much simpler table-per-hierarchy model.)

Furthermore, even though this mapping strategy is deceptively simple, our
experience is that performance may be unacceptable for complex class hierar-
chies. Queries always require either a join across many tables or many sequential
reads. Our problem should be recast as how to choose an appropriate combination
of mapping strategies for our application’s class hierarchies. A typical domain
model design has a mix of interfaces and abstract classes.

3.6.4 Choosing a strategy

You can apply all mapping strategies to abstract classes and interfaces. Interfaces
may have no state but may contain accessor method declarations, so they can be
treated like abstract classes. You can map an interface using <class>, <subclass>,
or <joined-subclass>; and you can map any declared or inherited property using
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Introducing associations 105

<property>. Hibernate won’t try to instantiate an abstract class, however, even if
you query or load it.

Here are some rules of thumb:

■ If you don’t require polymorphic associations or queries, lean toward the
table-per-concrete-class strategy. If you require polymorphic associations
(an association to a superclass, hence to all classes in the hierarchy with
dynamic resolution of the concrete class at runtime) or queries, and sub-
classes declare relatively few properties (particularly if the main difference
between subclasses is in their behavior), lean toward the table-per-class-hier-
archy model.

■ If you require polymorphic associations or queries, and subclasses declare
many properties (subclasses differ mainly by the data they hold), lean
toward the table-per-subclass approach.

By default, choose table-per-class-hierarchy for simple problems. For more com-
plex cases (or when you’re overruled by a data modeler insisting upon the impor-
tance of nullability constraints), you should consider the table-per-subclass
strategy. But at that point, ask yourself whether it might be better to remodel
inheritance as delegation in the object model. Complex inheritance is often best
avoided for all sorts of reasons unrelated to persistence or ORM. Hibernate acts as
a buffer between the object and relational models, but that doesn’t mean you can
completely ignore persistence concerns when designing your object model.

Note that you may also use <subclass> and <joined-subclass> mapping ele-
ments in a separate mapping file (as a top-level element, instead of <class>). You
then have to declare the class that is extended (for example, <subclass
name="CreditCard" extends="BillingDetails">), and the superclass mapping
must be loaded before the subclass mapping file. This technique allows you to
extend a class hierarchy without modifying the mapping file of the superclass.

You have now seen the intricacies of mapping an entity in isolation. In the next
section, we turn to the problem of mapping associations between entities, which is
another major issue arising from the object/relational paradigm mismatch.

3.7 Introducing associations

Managing the associations between classes and the relationships between tables is
the soul of ORM. Most of the difficult problems involved in implementing an ORM
solution relate to association management.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

106 CHAPTER 3

Mapping persistent classes

The Hibernate association model is extremely rich but is not without pitfalls,
especially for new users. In this section, we won’t try to cover all the possible
combinations. What we’ll do is examine certain cases that are extremely com-
mon. We return to the subject of association mappings in chapter 6, for a more
complete treatment.

But first, there’s something we need to explain up front.

3.7.1 Managed associations?

If you’ve used CMP 2.0/2.1, you’re familiar with the concept of a managed associa-
tion (or managed relationship). CMP associations are called container-managed
relationships (CMRs) for a reason. Associations in CMP are inherently bidirec-
tional: A change made to one side of an association is instantly reflected at the
other side. For example, if we call bid.setItem(item), the container automatically
calls item.getBids().add(item).

Transparent POJO-oriented persistence implementations such as Hibernate do
not implement managed associations. Contrary to CMR, Hibernate associations are
all inherently unidirectional. As far as Hibernate is concerned, the association from
Bid to Item is a different association than the association from Item to Bid.

To some people, this seems strange; to others, it feels completely natural. After
all, associations at the Java language level are always unidirectional—and Hiber-
nate claims to implement persistence for plain Java objects. We’ll merely observe
that this decision was made because Hibernate objects, unlike entity beans, are
not assumed to be always under the control of a container. In Hibernate applica-
tions, the behavior of a non-persistent instance is the same as the behavior of a
persistent instance.

Because associations are so important, we need a very precise language for clas-
sifying them.

3.7.2 Multiplicity

In describing and classifying associations, we’ll almost always use the association
multiplicity. Look at figure 3.10.

For us, the multiplicity is just two bits of information:

■ Can there be more than one Bid for a particular Item?

■ Can there be more than one Item for a particular Bid?

0..*1..1Item Bid
Figure 3.10

Relationship between Item and Bid

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Introducing associations 107

After glancing at the object model, we conclude that the association from Bid to
Item is a many-to-one association. Recalling that associations are directional, we
would also call the inverse association from Item to Bid a one-to-many association.

(Clearly, there are two more possibilities: many-to-many and one-to-one; we’ll get
back to these possibilities in chapter 6.)

In the context of object persistence, we aren’t interested in whether “many”
really means “two” or “maximum of five” or “unrestricted.”

3.7.3 The simplest possible association

The association from Bid to Item is an example of the simplest possible kind of
association in ORM. The object reference returned by getItem() is easily mapped
to a foreign key column in the BID table. First, here’s the Java class implementa-
tion of Bid:

public class Bid {
 ...

 private Item item;

 public void setItem(Item item) {
 this.item = item;
 }

 public Item getItem() {
 return item;
 }

 ...

}

Next, here’s the Hibernate mapping for this association:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>

</class>

This mapping is called a unidirectional many-to-one association. The column ITEM_ID
in the BID table is a foreign key to the primary key of the ITEM table.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

108 CHAPTER 3

Mapping persistent classes

We have explicitly specified the class, Item, that the association refers to. This
specification is usually optional, since Hibernate can determine this using
reflection.

We specified the not-null attribute because we can’t have a bid without an
item. The not-null attribute doesn’t affect the runtime behavior of Hibernate; it
exists mainly to control automatic data definition language (DDL) generation
(see chapter 9).

3.7.4 Making the association bidirectional

So far so good. But we also need to be able to easily fetch all the bids for a particu-
lar item. We need a bidirectional association here, so we have to add scaffolding
code to the Item class:

public class Item {
 ...

 private Set bids = new HashSet();

 public void setBids(Set bids) {
 this.bids = bids;
 }

 public Set getBids() {
 return bids;
 }

 public void addBid(Bid bid) {
 bid.setItem(this);
 bids.add(bid);
 }

 ...

}

You can think of the code in addBid() (a convenience method) as implementing
a managed association in the object model.

A basic mapping for this one-to-many association would look like this:

<class
 name="Item"
 table="ITEM">
 ...

 <set name="bids">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </set>
</class>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Introducing associations 109

The column mapping defined by the <key> element is a foreign key column of the
associated BID table. Notice that we specify the same foreign key column in this
collection mapping that we specified in the mapping for the many-to-one associa-
tion. The table structure for this association mapping is shown in figure 3.11.

Now we have two different unidirectional associations mapped to the same for-
eign key, which poses a problem. At runtime, there are two different in-memory
representations of the same foreign key value: the item property of Bid and an ele-
ment of the bids collection held by an Item. Suppose our application modifies the
association by, for example, adding a bid to an item in this fragment of the
addBid() method:

bid.setItem(item);
bids.add(bid);

This code is fine, but in this situation, Hibernate detects two different changes to
the in-memory persistent instances. From the point of view of the database, just
one value must be updated to reflect these changes: the ITEM_ID column of the
BID table. Hibernate doesn’t transparently detect the fact that the two changes refer to the
same database column, since at this point we’ve done nothing to indicate that this is a bidi-
rectional association.

We need one more thing in our association mapping to tell Hibernate to treat
this as a bidirectional association: The inverse attribute tells Hibernate that the
collection is a mirror image of the many-to-one association on the other side:

<class
 name="Item"
 table="ITEM">
 ...

 <set
 name="bids"
 inverse="true">

ITEM_ID <<PK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

BID_ID <<PK>>
ITEM_ID <<FK>>
AMOUNT
...

<<Table>>
ITEM <<Table>>

BID

Figure 3.11
Table relationships and keys for a
one-to-many/many-to-one mapping
 <key column="ITEM_ID"/>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

110 CHAPTER 3

Mapping persistent classes

 <one-to-many class="Bid"/>

 </set>

</class>

Without the inverse attribute, Hibernate would try to execute two different SQL
statements, both updating the same foreign key column, when we manipulate the
association between the two instances. By specifying inverse="true", we explicitly
tell Hibernate which end of the association it should synchronize with the data-
base. In this example, we tell Hibernate that it should propagate changes made
at the Bid end of the association to the database, ignoring changes made only to
the bids collection. Thus if we only call item.getBids().add(bid), no changes
will be made persistent. This is consistent with the behavior in Java without
Hibernate: If an association is bidirectional, you have to create the link on two
sides, not just one.

We now have a working bidirectional many-to-one association (which could also be
called a bidirectional one-to-many association, of course).

One final piece is missing. We explore the notion of transitive persistence in
much greater detail in the next chapter. For now, we’ll introduce the concepts of
cascading save and cascading delete, which we need in order to finish our mapping
of this association.

When we instantiate a new Bid and add it to an Item, the bid should become per-
sistent immediately. We would like to avoid the need to explicitly make a Bid per-
sistent by calling save() on the Session interface.

We make one final tweak to the mapping document to enable cascading save:

<class
 name="Item"
 table="ITEM">
 ...

 <set
 name="bids"
 inverse="true"
 cascade="save-update">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>

 </set>

</class>

The cascade attribute tells Hibernate to make any new Bid instance persistent

(that is, save it in the database) if the Bid is referenced by a persistent Item.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Introducing associations 111

The cascade attribute is directional: It applies to only one end of the association.
We could also specify cascade="save-update" for the many-to-one association
declared in the mapping for Bid, but doing so would make no sense in this case
because Bids are created after Items.

Are we finished? Not quite. We still need to define the lifecycle for both entities
in our association.

3.7.5 A parent/child relationship

With the previous mapping, the association between Bid and Item is fairly loose.
We would use this mapping in a real system if both entities had their own lifecycle
and were created and removed in unrelated business processes. Certain associa-
tions are much stronger than this; some entities are bound together so that their
lifecycles aren’t truly independent. In our example, it seems reasonable that dele-
tion of an item implies deletion of all bids for the item. A particular bid instance
references only one item instance for its entire lifetime. In this case, cascading
both saves and deletions makes sense.

If we enable cascading delete, the association between Item and Bid is called a
parent/child relationship. In a parent/child relationship, the parent entity is respon-
sible for the lifecycle of its associated child entities. This is the same semantics as a
composition (using Hibernate components), but in this case only entities are
involved; Bid isn’t a value type. The advantage of using a parent/child relationship
is that the child may be loaded individually or referenced directly by another entity.
A bid, for example, may be loaded and manipulated without retrieving the owning
item. It may be stored without storing the owning item at the same time. Further-
more, we reference the same Bid instance in a second property of Item, the single
successfulBid (see figure 3.2, page 63). Objects of value type can’t be shared.

To remodel the Item to Bid association as a parent/child relationship, the only
change we need to make is to the cascade attribute:

<class
 name="Item"
 table="ITEM">
 ...

 <set
 name="bids"
 inverse="true"
 cascade="all-delete-orphan">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>

 </set>
</class>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

112 CHAPTER 3

Mapping persistent classes

We used cascade="all-delete-orphan" to indicate the following:

■ Any newly instantiated Bid becomes persistent if the Bid is referenced by a
persistent Item (as was also the case with cascade="save-update"). Any per-
sistent Bid should be deleted if it’s referenced by an Item when the item is
deleted.

■ Any persistent Bid should be deleted if it’s removed from the bids collec-
tion of a persistent Item. (Hibernate will assume that it was only referenced
by this item and consider it an orphan.)

We have achieved with the following with this mapping: A Bid is removed from
the database if it’s removed from the collection of Bids of the Item (or it’s
removed if the Item itself is removed).

The cascading of operations to associated entities is Hibernate’s implementa-
tion of transitive persistence. We look more closely at this concept in chapter 4, sec-
tion 4.3, “Using transitive persistence in Hibernate.”

We have covered only a tiny subset of the association options available in Hiber-
nate. However, you already have enough knowledge to be able to build entire
applications. The remaining options are either rare or are variations of the associ-
ations we have described.

We recommend keeping your association mappings simple, using Hibernate
queries for more complex tasks.

3.8 Summary

In this chapter, we have focused on the structural aspect of the object/relational
paradigm mismatch and have discussed the first four generic ORM problems. We
discussed the programming model for persistent classes and the Hibernate ORM
metadata for fine-grained classes, object identity, inheritance, and associations.

You now understand that persistent classes in a domain model should be free of
cross-cutting concerns such as transactions and security. Even persistence-related
concerns shouldn’t leak into the domain model. We no longer entertain the use
of restrictive programming models such as EJB entity beans for our domain model.
Instead, we use transparent persistence, together with the unrestrictive POJO pro-
gramming model—which is really a set of best practices for the creation of properly
encapsulated Java types.

Hibernate requires you to provide metadata in XML text format. You use this
metadata to define the mapping strategy for all your persistent classes (and tables).

We created mappings for classes and properties and looked at class association

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 113

mappings. You saw how to implement the three well-known inheritance-mapping
strategies in Hibernate.

You also learned about the important differences between entities and value-
typed objects in Hibernate. Entities have their own identity and lifecycle, whereas
value-typed objects are dependent on an entity and are persisted with by-value
semantics. Hibernate allows fine-grained object models with fewer tables than
persistent classes.

Finally, we have implemented and mapped our first parent/child association
between persistent classes, using database foreign key fields and the cascading of
operations full stop.

In the next chapter, we investigate the dynamic aspects of the object/relational
mismatch, including a much deeper study of the cascaded operations we intro-
duced and the lifecycle of persistent objects.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Working with
persistent objects
This chapter covers

■ The lifecycle of objects in a
Hibernate application

■ Using the session persistence manager
■ Transitive persistence
■ Efficient fetching strategy
114

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 115

You now have an understanding of how Hibernate and ORM solve the static aspects
of the object/relational mismatch. With what you know so far, it’s possible to solve
the structural mismatch problem, but an efficient solution to the problem requires
something more. We must investigate strategies for runtime data access, since
they’re crucial to the performance of our applications. You need to learn how to
efficiently store and load objects.

This chapter covers the behavioral aspect of the object/relational mismatch,
listed in chapter 1 as the last four O/R mapping problems described in
section 1.4.2. We consider these problems to be at least as important as the struc-
tural problems discussed in chapter 3. In our experience, many developers are
only aware of the structural mismatch and rarely pay attention to the more
dynamic behavioral aspects of the mismatch.

In this chapter, we discuss the lifecycle of objects—how an object becomes per-
sistent, and how it stops being considered persistent—and the method calls and
other actions that trigger these transitions. The Hibernate persistence manager,
the Session, is responsible for managing object state, so you’ll learn how to use this
important API.

Retrieving object graphs efficiently is another central concern, so we introduce
the basic strategies in this chapter. Hibernate provides several ways to specify que-
ries that return objects without losing much of the power inherent to SQL. Because
network latency caused by remote access to the database can be an important lim-
iting factor in the overall performance of Java applications, you must learn how to
retrieve a graph of objects with a minimal number of database hits.

Let’s start by discussing objects, their lifecycle, and the events that trigger a
change of persistent state. These basics will give you the background you need
when working with your object graph, so you’ll know when and how to load and
save your objects. The material might be formal, but a solid understanding of the
persistence lifecycle is essential.

4.1 The persistence lifecycle

Since Hibernate is a transparent persistence mechanism—classes are unaware of
their own persistence capability—it’s possible to write application logic that is
unaware of whether the objects it operates on represent persistent state or tempo-
rary state that exists only in memory. The application shouldn’t necessarily need to
care that an object is persistent when invoking its methods.

However, in any application with persistent state, the application must interact

with the persistence layer whenever it needs to propagate state held in memory to

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

116 CHAPTER 4

Working with persistent objects

the database (or vice versa). To do this, you call Hibernate’s persistence manager
and query interfaces. When interacting with the persistence mechanism that way,
it’s necessary for the application to concern itself with the state and lifecycle of an
object with respect to persistence. We’ll refer to this as the persistence lifecycle.

Different ORM implementations use different terminology and define different
states and state transitions for the persistence lifecycle. Moreover, the object states
used internally might be different from those exposed to the client application.
Hibernate defines only three states, hiding the complexity of its internal imple-
mentation from the client code. In this section, we explain these three states: tran-
sient, persistent, and detached.

Let’s look at these states and their transitions in a state chart, shown in
figure 4.1. You can also see the method calls to the persistence manager that trig-
ger transitions. We discuss this chart in this section; refer to it later whenever you
need an overview.

In its lifecycle, an object can transition from a transient object to a persistent
object to a detached object. Let’s take a closer look at each of these states.

4.1.1 Transient objects

In Hibernate, objects instantiated using the new operator aren’t immediately per-
sistent. Their state is transient, which means they aren’t associated with any database
table row, and so their state is lost as soon as they’re dereferenced (no longer ref-
erenced by any other object) by the application. These objects have a lifespan that

Transientnew

Persistent

Detached

save()
saveOrUpdate()

evict()
close() *
clear() *

update()
saveOrUpdate()
lock()

delete()
get()

load()
find()

iterate()
etc.

garbage

garbage

Figure 4.1
States of an object and
transitions in a Hibernate
* affects all instances in a Session application

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 117

effectively ends at that time, and they become inaccessible and available for gar-
bage collection.

Hibernate considers all transient instances to be nontransactional; a modifica-
tion to the state of a transient instance isn’t made in the context of any transaction.
This means Hibernate doesn’t provide any rollback functionality for transient
objects. (In fact, Hibernate doesn’t roll back any object changes, as you’ll see later.)

Objects that are referenced only by other transient instances are, by default, also
transient. For an instance to transition from transient to persistent state requires
either a save() call to the persistence manager or the creation of a reference from
an already persistent instance.

4.1.2 Persistent objects

A persistent instance is any instance with a database identity, as defined in chapter 3,
section 3.4, “Understanding object identity.” That means a persistent instance has
a primary key value set as its database identifier.

Persistent instances might be objects instantiated by the application and then
made persistent by calling the save() method of the persistence manager (the
Hibernate Session, discussed in more detail later in this chapter). Persistent
instances are then associated with the persistence manager. They might even be
objects that became persistent when a reference was created from another persis-
tent object already associated with a persistence manager. Alternatively, a persistent
instance might be an instance retrieved from the database by execution of a query,
by an identifier lookup, or by navigating the object graph starting from another
persistent instance. In other words, persistent instances are always associated with
a Session and are transactional.

Persistent instances participate in transactions—their state is synchronized
with the database at the end of the transaction. When a transaction commits,
state held in memory is propagated to the database by the execution of SQL
INSERT, UPDATE, and DELETE statements. This procedure might also occur at other
times. For example, Hibernate might synchronize with the database before exe-
cution of a query. This ensures that queries will be aware of changes made earlier
during the transaction.

We call a persistent instance new if it has been allocated a primary key value but
has not yet been inserted into the database. The new persistent instance will
remain “new” until synchronization occurs.

Of course, you don’t update the database row of every persistent object in mem-

ory at the end of the transaction. ORM software must have a strategy for detecting
which persistent objects have been modified by the application in the transaction.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

118 CHAPTER 4

Working with persistent objects

We call this automatic dirty checking (an object with modifications that haven’t yet
been propagated to the database is considered dirty). Again, this state isn’t visible
to the application. We call this feature transparent transaction-level write-behind, mean-
ing that Hibernate propagates state changes to the database as late as possible but
hides this detail from the application.

Hibernate can detect exactly which attributes have been modified, so it’s possi-
ble to include only the columns that need updating in the SQL UPDATE statement.
This might bring performance gains, particularly with certain databases. However,
it isn’t usually a significant difference, and, in theory, it could harm performance
in some environments. So, by default, Hibernate includes all columns in the SQL
UPDATE statement (hence, Hibernate can generate this basic SQL at startup, not at
runtime). If you only want to update modified columns, you can enable dynamic
SQL generation by setting dynamic-update="true" in a class mapping. (Note that
this feature is extremely difficult to implement in a handcoded persistence layer.)
We talk about Hibernate’s transaction semantics and the synchronization process
(known as flushing) in more detail in the next chapter.

Finally, a persistent instance may be made transient via a delete() call to the per-
sistence manager API, resulting in deletion of the corresponding row of the data-
base table.

4.1.3 Detached objects

When a transaction completes, the persistent instances associated with the persis-
tence manager still exist. (If the transaction were successful, their in-memory state
will have been synchronized with the database.) In ORM implementations with
process-scoped identity (see the following sections), the instances retain their associa-
tion to the persistence manager and are still considered persistent.

In the case of Hibernate, however, these instances lose their association with the
persistence manager when you close() the Session. We refer to these objects as
detached, indicating that their state is no longer guaranteed to be synchronized with
database state; they’re no longer under the management of Hibernate. However,
they still contain persistent data (that may possibly soon be stale). It’s possible (and
common) for the application to retain a reference to a detached object outside of
a transaction (and persistence manager). Hibernate lets you reuse these instances
in a new transaction by reassociating them with a new persistence manager. (After
reassociation, they’re considered persistent.) This feature has a deep impact on
how multitiered applications may be designed. The ability to return objects from

one transaction to the presentation layer and later reuse them in a new transaction

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 119

is one of Hibernate’s main selling points. We discuss this usage in the next chapter
as an implementation technique for long-running application transactions. We also
show you how to avoid the DTO (anti-) pattern by using detached objects in chap-
ter 8, in the section “Rethinking data transfer objects.”

Hibernate also provides an explicit detachment operation: the evict() method
of the Session. However, this method is typically used only for cache management
(a performance consideration). It’s not normal to perform detachment explicitly.
Rather, all objects retrieved in a transaction become detached when the Session is
closed or when they’re serialized (if they’re passed remotely, for example). So,
Hibernate doesn’t need to provide functionality for controlling detachment of sub-
graphs. Instead, the application can control the depth of the fetched subgraph (the
instances that are currently loaded in memory) using the query language or
explicit graph navigation. Then, when the Session is closed, this entire subgraph
(all objects associated with a persistence manager) becomes detached.

Let’s look at the different states again but this time consider the scope of object
identity.

4.1.4 The scope of object identity

As application developers, we identify an object using Java object identity (a==b).
So, if an object changes state, is its Java identity guaranteed to be the same in the
new state? In a layered application, that might not be the case.

In order to explore this topic, it’s important to understand the relationship
between Java identity, a==b, and database identity, a.getId().equals(b.getId()).
Sometimes both are equivalent; sometimes they aren’t. We refer to the conditions
under which Java identity is equivalent to database identity as the scope of object identity.

For this scope, there are three common choices:

■ A primitive persistence layer with no identity scope makes no guarantees that
if a row is accessed twice, the same Java object instance will be returned to
the application. This becomes problematic if the application modifies two
different instances that both represent the same row in a single transaction
(how do you decide which state should be propagated to the database?).

■ A persistence layer using transaction-scoped identity guarantees that, in the
context of a single transaction, there is only one object instance that repre-
sents a particular database row. This avoids the previous problem and also
allows for some caching to be done at the transaction level.

■ Process-scoped identity goes one step further and guarantees that there is only

one object instance representing the row in the whole process (JVM).

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

120 CHAPTER 4

Working with persistent objects

For a typical web or enterprise application, transaction-scoped identity is pre-
ferred. Process-scoped identity offers some potential advantages in terms of cache
utilization and the programming model for reuse of instances across multiple
transactions; however, in a pervasively multithreaded application, the cost of always
synchronizing shared access to persistent objects in the global identity map is too
high a price to pay. It’s simpler, and more scalable, to have each thread work with
a distinct set of persistent instances in each transaction scope.

Speaking loosely, we would say that Hibernate implements transaction-scoped
identity. Actually, the Hibernate identity scope is the Session instance, so identical
objects are guaranteed if the same persistence manager (the Session) is used for
several operations. But a Session isn’t the same as a (database) transaction—it’s a
much more flexible element. We’ll explore the differences and the consequences
of this concept in the next chapter. Let’s focus on the persistence lifecycle and
identity scope again.

If you request two objects using the same database identifier value in the
same Session, the result will be two references to the same in-memory object.
The following code example demonstrates this behavior, with several load()
operations in two Sessions:

Session session1 = sessions.openSession();
Transaction tx1 = session1.beginTransaction();

// Load Category with identifier value "1234"
Object a = session1.load(Category.class, new Long(1234));
Object b = session1.load(Category.class, new Long(1234));

if (a==b) {
 System.out.println("a and b are identical.");
}

tx1.commit();
session1.close();

Session session2 = sessions.openSession();
Transaction tx2 = session2.beginTransaction();

Object b2 = session2.load(Category.class, new Long(1234));

if (a!=b2) {
 System.out.println("a and b2 are not identical.");
}

tx2.commit();
session2.close();

Object references a and b not only have the same database identity, they also have

the same Java identity since they were loaded in the same Session. Once outside
this boundary, however, Hibernate doesn’t guarantee Java identity, so a and b2

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 121

aren’t identical and the message is printed on the console. Of course, a test for
database identity—a.getId().equals (b2.getId())—would still return true.

To further complicate our discussion of identity scopes, we need to consider
how the persistence layer handles a reference to an object outside its identity
scope. For example, for a persistence layer with transaction-scoped identity such as
Hibernate, is a reference to a detached object (that is, an instance persisted or
loaded in a previous, completed session) tolerated?

4.1.5 Outside the identity scope

If an object reference leaves the scope of guaranteed identity, we call it a reference to
a detached object. Why is this concept useful?

In web applications, you usually don’t maintain a database transaction across a
user interaction. Users take a long time to think about modifications, but for scal-
ability reasons, you must keep database transactions short and release database
resources as soon as possible. In this environment, it’s useful to be able to reuse a
reference to a detached instance. For example, you might want to send an object
retrieved in one unit of work to the presentation tier and later reuse it in a second
unit of work, after it’s been modified by the user.

You don’t usually wish to reattach the entire object graph in the second unit of
of work; for performance (and other) reasons, it’s important that reassociation of
detached instances be selective. Hibernate supports selective reassociation of detached
instances. This means the application can efficiently reattach a subgraph of a graph
of detached objects with the current (“second”) Hibernate Session. Once a
detached object has been reattached to a new Hibernate persistence manager, it
may be considered a persistent instance, and its state will be synchronized with the
database at the end of the transaction (due to Hibernate’s automatic dirty check-
ing of persistent instances).

Reattachment might result in the creation of new rows in the database when a
reference is created from a detached instance to a new transient instance. For exam-
ple, a new Bid might have been added to a detached Item while it was on the pre-
sentation tier. Hibernate can detect that the Bid is new and must be inserted in the
database. For this to work, Hibernate must be able to distinguish between a “new”
transient instance and an “old” detached instance. Transient instances (such as the
Bid) might need to be saved; detached instances (such as the Item) might need to
be reattached (and later updated in the database). There are several ways to distin-
guish between transient and detached instances, but the nicest approach is to look

at the value of the identifier property. Hibernate can examine the identifier of a
transient or detached object on reattachment and treat the object (and the

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

122 CHAPTER 4

Working with persistent objects

associated graph of objects) appropriately. We discuss this important issue further
in section 4.3.4, “Distinguishing between transient and detached instances.”

If you want to take advantage of Hibernate’s support for reassociation of
detached instances in your own applications, you need to be aware of Hibernate’s
identity scope when designing your application—that is, the Session scope that
guarantees identical instances. As soon as you leave that scope and have detached
instances, another interesting concept comes into play.

We need to discuss the relationship between Java equality (see chapter 3,
section 3.4.1, “Identity versus equality”) and database identity. Equality is an iden-
tity concept that you, as a class developer, control and that you can (and sometimes
have to) use for classes that have detached instances. Java equality is defined by the
implementation of the equals() and hashCode() methods in the persistent classes
of the domain model.

4.1.6 Implementing equals() and hashCode()

The equals() method is called by application code or, more importantly, by the
Java collections. A Set collection, for example, calls equals() on each object you
put in the Set, to determine (and prevent) duplicate elements.

First let’s consider the default implementation of equals(), defined by
java.lang.Object, which uses a comparison by Java identity. Hibernate guarantees
that there is a unique instance for each row of the database inside a Session. There-
fore, the default identity equals() is appropriate if you never mix instances—that
is, if you never put detached instances from different sessions into the same Set.
(Actually, the issue we’re exploring is also visible if detached instances are from the
same session but have been serialized and deserialized in different scopes.) As soon
as you have instances from multiple sessions, however, it becomes possible to have
a Set containing two Items that each represent the same row of the database table
but don’t have the same Java identity. This would almost always be semantically
wrong. Nevertheless, it’s possible to build a complex application with identity
(default) equals as long as you exercise discipline when dealing with detached
objects from different sessions (and keep an eye on serialization and deserializa-
tion). One nice thing about this approach is that you don’t have to write extra code
to implement your own notion of equality.

However, if this concept of equality isn’t what you want, you have to override
equals() in your persistent classes. Keep in mind that when you override equals(),
you always need to also override hashCode() so the two methods are consistent (if

two objects are equal, they must have the same hashcode). Let’s look at some of the
ways you can override equals() and hashCode() in persistent classes.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 123

Using database identifier equality
A clever approach is to implement equals() to compare just the database identifier
property (usually a surrogate primary key) value:

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (id==null) return false;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 return this.id.equals(that.getId());
 }

 public int hashCode() {
 return id==null ?
 System.identityHashCode(this) :
 id.hashCode();
 }

}

Notice how this equals() method falls back to Java identity for transient instances
(if id==null) that don’t have a database identifier value assigned yet. This is rea-
sonable, since they can’t have the same persistent identity as another instance.

Unfortunately, this solution has one huge problem: Hibernate doesn’t assign
identifier values until an entity is saved. So, if the object is added to a Set before
being saved, its hash code changes while it’s contained by the Set, contrary to the
contract of java.util.Set. In particular, this problem makes cascade save (dis-
cussed later in this chapter) useless for sets. We strongly discourage this solution
(database identifier equality).

Comparing by value
A better way is to include all persistent properties of the persistent class, apart from
any database identifier property, in the equals() comparison. This is how most
people perceive the meaning of equals(); we call it by value equality.

When we say “all properties,” we don’t mean to include collections. Collection
state is associated with a different table, so it seems wrong to include it. More
important, you don’t want to force the entire object graph to be retrieved just to
perform equals(). In the case of User, this means you shouldn’t include the items
collection (the items sold by this user) in the comparison. So, this is the implemen-
tation you could use:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

124 CHAPTER 4

Working with persistent objects

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 if (!this.getUsername().equals(that.getUsername())
 return false;
 if (!this.getPassword().equals(that.getPassword())
 return false;
 return true;
 }

 public int hashCode() {
 int result = 14;
 result = 29 * result + getUsername().hashCode();
 result = 29 * result + getPassword().hashCode();
 return result;
 }

}

However, there are again two problems with this approach:

■ Instances from different sessions are no longer equal if one is modified (for
example, if the user changes his password).

■ Instances with different database identity (instances that represent different
rows of the database table) could be considered equal, unless there is some
combination of properties that are guaranteed to be unique (the database
columns have a unique constraint). In the case of User, there is a unique
property: username.

To get to the solution we recommend, you need to understand the notion of a busi-
ness key.

Using business key equality
A business key is a property, or some combination of properties, that is unique for
each instance with the same database identity. Essentially, it’s the natural key you’d
use if you weren’t using a surrogate key. Unlike a natural primary key, it isn’t an
absolute requirement that the business key never change—as long as it changes
rarely, that’s enough.

We argue that every entity should have a business key, even if it includes all prop-
erties of the class (this would be appropriate for some immutable classes). The
business key is what the user thinks of as uniquely identifying a particular record,

whereas the surrogate key is what the application and database use.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence lifecycle 125

Business key equality means that the equals() method compares only the proper-
ties that form the business key. This is a perfect solution that avoids all the prob-
lems described earlier. The only downside is that it requires extra thought to
identify the correct business key in the first place. But this effort is required anyway;
it’s important to identify any unique keys if you want your database to help ensure
data integrity via constraint checking.

For the User class, username is a great candidate business key. It’s never null, it’s
unique, and it changes rarely (if ever):

public class User {
 ...

 public boolean equals(Object other) {
 if (this==other) return true;
 if (!(other instanceof User)) return false;
 final User that = (User) other;
 return this.username.equals(that.getUsername());
 }

 public int hashCode() {
 return username.hashCode();
 }

}

For some other classes, the business key might be more complex, consisting of a
combination of properties. For example, candidate business keys for the Bid class
are the item ID together with the bid amount, or the item ID together with the date
and time of the bid. A good business key for the BillingDetails abstract class is
the number together with the type (subclass) of billing details. Notice that it’s almost
never correct to override equals() on a subclass and include another property in
the comparison. It’s tricky to satisfy the requirements that equality be both symmet-
ric and transitive in this case; and, more important, the business key wouldn’t cor-
respond to any well-defined candidate natural key in the database (subclass
properties may be mapped to a different table).

You might have noticed that the equals() and hashCode() methods always access
the properties of the other object via the getter methods. This is important, since
the object instance passed as other might be a proxy object, not the actual instance
that holds the persistent state. This is one point where Hibernate isn’t completely
transparent, but it’s a good practice to use accessor methods instead of direct
instance variable access anyway.

Finally, take care when modifying the value of the business key properties; don’t

change the value while the domain object is in a set.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

126 CHAPTER 4

Working with persistent objects

We’ve talked about the persistence manager in this section. It’s time to take a
closer look at the persistence manager and explore the Hibernate Session API
in greater detail. We’ll come back to detached objects with more details in the
next chapter.)

4.2 The persistence manager

Any transparent persistence tool includes a persistence manager API, which usually
provides services for

■ Basic CRUD operations

■ Query execution

■ Control of transactions

■ Management of the transaction-level cache

The persistence manager can be exposed by several different interfaces (in the
case of Hibernate, Session, Query, Criteria, and Transaction). Under the covers,
the implementations of these interfaces are coupled tightly.

The central interface between the application and Hibernate is Session; it’s
your starting point for all the operations just listed. For most of the rest of this
book, we’ll refer to the persistence manager and the session interchangeably; this is
consistent with usage in the Hibernate community.

So, how do you start using the session? At the beginning of a unit of work, a
thread obtains an instance of Session from the application’s SessionFactory. The
application might have multiple SessionFactorys if it accesses multiple data-
sources. But you should never create a new SessionFactory just to service a partic-
ular request—creation of a SessionFactory is extremely expensive. On the other
hand, Session creation is extremely inexpensive; the Session doesn’t even obtain a
JDBC Connection until a connection is required.

After opening a new session, you use it to load and save objects.

4.2.1 Making an object persistent

The first thing you want to do with a Session is make a new transient object persis-
tent. To do so, you use the save() method:

User user = new User();
user.getName().setFirstname("John");

user.getName().setLastname("Doe");

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence manager 127

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

session.save(user);

tx.commit();
session.close();

First, we instantiate a new transient object user as usual. Of course, we might also
instantiate it after opening a Session; they aren’t related yet. We open a new Ses-
sion using the SessionFactory referred to by sessions, and then we start a new
database transaction.

A call to save() makes the transient instance of User persistent. It’s now associ-
ated with the current Session. However, no SQL INSERT has yet been executed. The
Hibernate Session never executes any SQL statement until absolutely necessary.

The changes made to persistent objects have to be synchronized with the data-
base at some point. This happens when we commit() the Hibernate Transaction.
In this case, Hibernate obtains a JDBC connection and issues a single SQL INSERT
statement. Finally, the Session is closed and the JDBC connection is released.

Note that it’s better (but not required) to fully initialize the User instance before
associating it with the Session. The SQL INSERT statement contains the values that
were held by the object at the point when save() was called. You can, of course, mod-
ify the object after calling save(), and your changes will be propagated to the data-
base as an SQL UPDATE.

Everything between session.beginTransaction() and tx.commit() occurs in
one database transaction. We haven’t discussed transactions in detail yet; we’ll
leave that topic for the next chapter. But keep in mind that all database operations
in a transaction scope either completely succeed or completely fail. If one of the
UPDATE or INSERT statements made on tx.commit() fails, all changes made to per-
sistent objects in this transaction will be rolled back at the database level. However,
Hibernate does not roll back in-memory changes to persistent objects; this is rea-
sonable since a failure of a database transaction is normally nonrecoverable and
you have to discard the failed Session immediately.

4.2.2 Updating the persistent state of a detached instance

Modifying the user after the session is closed will have no effect on its persistent
representation in the database. When the session is closed, user becomes a
detached instance. It may be reassociated with a new Session by calling update()
or lock().
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

128 CHAPTER 4

Working with persistent objects

The update() method forces an update to the persistent state of the object in
the database, scheduling an SQL UPDATE. Here’s an example of detached object
handling:

user.setPassword("secret");

Session sessionTwo = sessions.openSession();
Transaction tx = sessionTwo.beginTransaction();

sessionTwo.update(user);

user.setUsername("jonny");

tx.commit();
sessionTwo.close();

It doesn’t matter if the object is modified before or after it’s passed to update().
The important thing is that the call to update() is used to reassociate the detached
instance to the new Session (and current transaction) and tells Hibernate to treat
the object as dirty (unless select-before-update is enabled for the persistent class
mapping, in which case Hibernate will determine if the object is dirty by executing
a SELECT statement and comparing the object’s current state to the current data-
base state).

A call to lock() associates the object with the Session without forcing an update,
as shown here:

Session sessionTwo = sessions.openSession();
Transaction tx = sessionTwo.beginTransaction();

sessionTwo.lock(user, LockMode.NONE);

user.setPassword("secret");
user.setLoginName("jonny");

tx.commit();
sessionTwo.close();

In this case, it does matter whether changes are made before or after the object is
associated with the session. Changes made before the call to lock() aren’t propa-
gated to the database; you only use lock() if you’re sure that the detached instance
hasn’t been modified.

We discuss Hibernate lock modes in the next chapter. By specifying Lock-
Mode.NONE here, we tell Hibernate not to perform a version check or obtain any
database-level locks when reassociating the object with the Session. If we specified
LockMode.READ or LockMode.UPGRADE, Hibernate would execute a SELECT statement
in order to perform a version check (and to set an upgrade lock).
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

The persistence manager 129

4.2.3 Retrieving a persistent object

The Session is also used to query the database and retrieve existing persistent
objects. Hibernate is especially powerful in this area, as you’ll see later in this chap-
ter and in chapter 7. However, special methods are provided on the Session API
for the simplest kind of query: retrieval by identifier. One of these methods is
get(), demonstrated here:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

int userID = 1234;
User user = (User) session.get(User.class, new Long(userID));

tx.commit();
session.close();

The retrieved object user may now be passed to the presentation layer for use out-
side the transaction as a detached instance (after the session has been closed). If
no row with the given identifier value exists in the database, the get() returns null.

4.2.4 Updating a persistent object

Any persistent object returned by get() or any other kind of query is already asso-
ciated with the current Session and transaction context. It can be modified, and
its state will be synchronized with the database. This mechanism is called automatic
dirty checking, which means Hibernate will track and save the changes you make to
an object inside a session:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

int userID = 1234;
User user = (User) session.get(User.class, new Long(userID));

user.setPassword("secret");

tx.commit();
session.close();

First we retrieve the object from the database with the given identifier. We modify
the object, and these modifications are propagated to the database when tx.com-
mit() is called. Of course, as soon as we close the Session, the instance is consid-
ered detached.

4.2.5 Making a persistent object transient
You can easily make a persistent object transient, removing its persistent state from
the database, using the delete() method:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

130 CHAPTER 4

Working with persistent objects

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

int userID = 1234;
User user = (User) session.get(User.class, new Long(userID));

session.delete(user);

tx.commit();
session.close();

The SQL DELETE will be executed only when the Session is synchronized with the
database at the end of the transaction.

After the Session is closed, the user object is considered an ordinary transient
instance. The transient instance will be destroyed by the garbage collector if it’s no
longer referenced by any other object. Both the in-memory object instance and the
persistent database row will have been removed.

4.2.6 Making a detached object transient

Finally, you can make a detached instance transient, deleting its persistent state
from the database. This means you don’t have to reattach (with update() or
lock()) a detached instance to delete it from the database; you can directly delete
a detached instance:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

session.delete(user);

tx.commit();
session.close();

In this case, the call to delete() does two things: It associates the object with the
Session and then schedules the object for deletion, executed on tx.commit().

You now know the persistence lifecycle and the basic operations of the persis-
tence manager. Together with the persistent class mappings we discussed in chap-
ter 3, you can create your own small Hibernate application. (If you like, you can
jump to chapter 8 and read about a handy Hibernate helper class for SessionFac-
tory and Session management.) Keep in mind that we didn’t show you any excep-
tion-handling code so far, but you should be able to figure out the try/catch
blocks yourself. Map some simple entity classes and components, and then store
and load objects in a stand-alone application (you don’t need a web container or
application server, just write a main method). However, as soon as you try to store
associated entity objects—that is, when you deal with a more complex object
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Using transitive persistence in Hibernate 131

graph—you’ll see that calling save() or delete() on each object of the graph isn’t
an efficient way to write applications.

You’d like to make as few calls to the Session as possible. Transitive persistence pro-
vides a more natural way to force object state changes and to control the persis-
tence lifecycle.

4.3 Using transitive persistence in Hibernate

Real, nontrivial applications work not with single objects but rather with graphs of
objects. When the application manipulates a graph of persistent objects, the result
may be an object graph consisting of persistent, detached, and transient instances.
Transitive persistence is a technique that allows you to propagate persistence to tran-
sient and detached subgraphs automatically.

For example, if we add a newly instantiated Category to the already persistent
hierarchy of categories, it should automatically become persistent without a call to
Session.save(). We gave a slightly different example in chapter 3 when we
mapped a parent/child relationship between Bid and Item. In that case, not only
were bids automatically made persistent when they were added to an item, but they
were also automatically deleted when the owning item was deleted.

There is more than one model for transitive persistence. The best known is per-
sistence by reachability, which we’ll discuss first. Although some basic principles are
the same, Hibernate uses its own, more powerful model, as you’ll see later.

4.3.1 Persistence by reachability

An object persistence layer is said to implement persistence by reachability if any
instance becomes persistent when the application creates an object reference to
the instance from another instance that is already persistent. This behavior is illus-
trated by the object diagram (note that this isn’t a class diagram) in figure 4.2.

Electronics : Category

Computer : Category

Desktop PCs : Category Monitors : Category

Cell Phones : Category

Transient

Persistent

Persistent by
Reachability
Figure 4.2 Persistence by reachability with a root persistent object

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

132 CHAPTER 4

Working with persistent objects

In this example, “Computer” is a persistent object. The objects “Desktop PCs”
and “Monitors” are also persistent; they’re reachable from the “Computer” Cate-
gory instance. “Electronics” and “Cell Phones” are transient. Note that we assume
navigation is only possible to child categories, and not to the parent—for example,
we can call computer.getChildCategories(). Persistence by reachability is a recur-
sive algorithm: All objects reachable from a persistent instance become persistent
either when the original instance is made persistent or just before in-memory state
is synchronized with the data store.

Persistence by reachability guarantees referential integrity; any object graph can
be completely re-created by loading the persistent root object. An application may
walk the object graph from association to association without worrying about the
persistent state of the instances. (SQL databases have a different approach to refer-
ential integrity, relying on foreign key and other constraints to detect a misbehav-
ing application.)

In the purest form of persistence by reachability, the database has some top-
level, or root, object from which all persistent objects are reachable. Ideally, an
instance should become transient and be deleted from the database if it isn’t reach-
able via references from the root persistent object.

Neither Hibernate nor other ORM solutions implement this form; there is no
analog of the root persistent object in an SQL database and no persistent garbage
collector that can detect unreferenced instances. Object-oriented data stores
might implement a garbage-collection algorithm similar to the one implemented
for in-memory objects by the JVM, but this option isn’t available in the ORM world;
scanning all tables for unreferenced rows won’t perform acceptably.

So, persistence by reachability is at best a halfway solution. It helps you make
transient objects persistent and propagate their state to the database without many
calls to the persistence manager. But (at least, in the context of SQL databases and
ORM) it isn’t a full solution to the problem of making persistent objects transient
and removing their state from the database. This turns out to be a much more dif-
ficult problem. You can’t simply remove all reachable instances when you remove
an object; other persistent instances may hold references to them (remember that
entities can be shared). You can’t even safely remove instances that aren’t refer-
enced by any persistent object in memory; the instances in memory are only a small
subset of all objects represented in the database. Let’s look at Hibernate’s more
flexible transitive persistence model.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Using transitive persistence in Hibernate 133

4.3.2 Cascading persistence with Hibernate

Hibernate’s transitive persistence model uses the same basic concept as persistence
by reachability—that is, object associations are examined to determine transitive
state. However, Hibernate allows you to specify a cascade style for each association
mapping, which offers more flexibility and fine-grained control for all state transi-
tions. Hibernate reads the declared style and cascades operations to associated
objects automatically.

By default, Hibernate does not navigate an association when searching for tran-
sient or detached objects, so saving, deleting, or reattaching a Category won’t affect
the child category objects. This is the opposite of the persistence-by-reachability
default behavior. If, for a particular association, you wish to enable transitive per-
sistence, you must override this default in the mapping metadata.

You can map entity associations in metadata with the following attributes:

■ cascade="none", the default, tells Hibernate to ignore the association.

■ cascade="save-update" tells Hibernate to navigate the association when the
transaction is committed and when an object is passed to save() or
update() and save newly instantiated transient instances and persist changes to
detached instances.

■ cascade="delete" tells Hibernate to navigate the association and delete per-
sistent instances when an object is passed to delete().

■ cascade="all" means to cascade both save-update and delete, as well as
calls to evict and lock.

■ cascade="all-delete-orphan" means the same as cascade="all" but, in addi-
tion, Hibernate deletes any persistent entity instance that has been removed
(dereferenced) from the association (for example, from a collection).

■ cascade="delete-orphan" Hibernate will delete any persistent entity
instance that has been removed (dereferenced) from the association (for
example, from a collection).

This association-level cascade style model is both richer and less safe than persistence
by reachability. Hibernate doesn’t make the same strong guarantees of referential
integrity that persistence by reachability provides. Instead, Hibernate partially del-
egates referential integrity concerns to the foreign key constraints of the underly-
ing relational database. Of course, there is a good reason for this design decision:
It allows Hibernate applications to use detached objects efficiently, because you can

control reattachment of a detached object graph at the association level.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

134 CHAPTER 4

Working with persistent objects

Let’s elaborate on the cascading concept with some example association map-
pings. We recommend that you read the next section in one turn, because each
example builds on the previous one. Our first example is straightforward; it lets
you save newly added categories efficiently.

4.3.3 Managing auction categories

System administrators can create new categories, rename cat-
egories, and move subcategories around in the category hier-
archy. This structure can be seen in figure 4.3.

Now, we map this class and the association:

<class name="Category" table="CATEGORY">
 ...

 <property name="name" column="CATEGORY_NAME"/>

 <many-to-one
 name="parentCategory"
 class="Category"
 column="PARENT_CATEGORY_ID"
 cascade="none"/>

 <set
 name="childCategories"
 table="CATEGORY"
 cascade="save-update"
 inverse="true">
 <key column="PARENT_CATEGORY_ID"/>
 <one-to-many class="Category"/>

 </set>
 ...
</class>

This is a recursive, bidirectional, one-to-many association, as briefly discussed in
chapter 3. The one-valued end is mapped with the <many-to-one> element and the
Set typed property with the <set>. Both refer to the same foreign key column:
PARENT_CATEGORY_ID.

Suppose we create a new Category as a child category of “Computer” (see
figure 4.4).

We have several ways to create this new “Laptops” object and save it in the data-
base. We could go back to the database and retrieve the “Computer” category to
which our new “Laptops” category will belong, add the new category, and commit
the transaction:

0..*
Category

name : String

Figure 4.3
Category class with
association to itself
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Using transitive persistence in Hibernate 135

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

Category computer = (Category) session.get(Category.class, computerId);
Category laptops = new Category("Laptops");

computer.getChildCategories().add(laptops);
laptops.setParentCategory(computer);

tx.commit();
session.close();

The computer instance is persistent (attached to a session), and the childCatego-
ries association has cascade save enabled. Hence, this code results in the new
laptops category becoming persistent when tx.commit() is called, because Hiber-
nate cascades the dirty-checking operation to the children of computer. Hiber-
nate executes an INSERT statement.

Let’s do the same thing again, but this time create the link between “Computer”
and “Laptops” outside of any transaction (in a real application, it’s useful to manip-
ulate an object graph in a presentation tier—for example, before passing the
graph back to the persistence layer to make the changes persistent):

Category computer = ... // Loaded in a previous session

Category laptops = new Category("Laptops");

computer.getChildCategories().add(laptops);
laptops.setParentCategory(computer);

Electronics : Category

Computer : Category

Desktop PCs : Category Monitors : Category

Cell Phones : Category

Laptops : Category

Figure 4.4 Adding a new Category to the object graph
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

136 CHAPTER 4

Working with persistent objects

The detached computer object and any other detached objects it refers to are now
associated with the new transient laptops object (and vice versa). We make this
change to the object graph persistent by saving the new object in a second Hiber-
nate session:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

// Persist one new category and the link to its parent category
session.save(laptops);

tx.commit();
session.close();

Hibernate will inspect the database identifier property of the parent category of
laptops and correctly create the relationship to the “Computer” category in the
database. Hibernate inserts the identifier value of the parent into the foreign key
field of the new “Laptops” row in CATEGORY.

Since cascade="none" is defined for the parentCategory association, Hibernate
ignores changes to any of the other categories in the hierarchy (“Computer”,
“Electronics”). It doesn’t cascade the call to save() to entities referred to by this
association. If we had enabled cascade="save-update" on the <many-to-one> map-
ping of parentCategory, Hibernate would have had to navigate the whole graph of
objects in memory, synchronizing all instances with the database. This process
would perform badly, because a lot of useless data access would be required. In
this case, we neither needed nor wanted transitive persistence for the parentCate-
gory association.

Why do we have cascading operations? We could have saved the laptop object,
as shown in the previous example, without any cascade mapping being used. Well,
consider the following case:

Category computer = ... // Loaded in a previous Session

Category laptops = new Category("Laptops");
Category laptopAccessories = new Category("Laptop Accessories");
Category laptopTabletPCs = new Category("Tablet PCs")

laptops.addChildCategory(laptopAccessories);
laptops.addChildCategory(laptopTabletPCs);

computer.addChildCategory(laptops);

(Notice that we use the convenience method addChildCategory() to set both ends
of the association link in one call, as described in chapter 3.)

It would be undesirable to have to save each of the three new categories individ-

ually. Fortunately, because we mapped the childCategories association with

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Using transitive persistence in Hibernate 137

cascade="save-update", we don’t need to. The same code we used before to save
the single “Laptops” category will save all three new categories in a new session:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

// Persist all three new Category instances
session.save(laptops);

tx.commit();
session.close();

You’re probably wondering why the cascade style is called cascade="save-update"
rather than cascade="save". Having just made all three categories persistent pre-
viously, suppose we made the following changes to the category hierarchy in a sub-
sequent request (outside of a session and transaction):

laptops.setName("Laptop Computers");
laptopAccessories.setName("Accessories & Parts");
laptopTabletPCs.setName("Tablet Computers");

Category laptopBags = new Category("Laptop Bags");
laptops.addChildCategory(laptopBags);

We have added a new category as a child of the “Laptops” category and modi-
fied all three existing categories. The following code propagates these changes
to the database:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

// Update three old Category instances and insert the new one
session.update(laptops);

tx.commit();
session.close();

Specifying cascade="save-update" on the childCategories association accurately
reflects the fact that Hibernate determines what is needed to persist the objects to
the database. In this case, it will reattach/update the three detached categories
(laptops, laptopAccessories, and laptopTabletPCs) and save the new child cate-
gory (laptopBags).

Notice that the last code example differs from the previous two session examples
only in a single method call. The last example uses update() instead of save()
because laptops was already persistent.

We can rewrite all the examples to use the saveOrUpdate() method. Then the

three code snippets are identical:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

138 CHAPTER 4

Working with persistent objects

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

// Let Hibernate decide what's new and what's detached
session.saveOrUpdate(laptops);

tx.commit();
session.close();

The saveOrUpdate() method tells Hibernate to propagate the state of an instance
to the database by creating a new database row if the instance is a new transient
instance or updating the existing row if the instance is a detached instance. In
other words, it does exactly the same thing with the laptops category as cas-
cade="save-update" did with the child categories of laptops.

One final question: How did Hibernate know which children were detached and
which were new transient instances?

4.3.4 Distinguishing between transient and detached instances

Since Hibernate doesn’t keep a reference to a detached instance, you have to let
Hibernate know how to distinguish between a detached instance like laptops (if it
was created in a previous session) and a new transient instance like laptopBags.

A range of options is available. Hibernate will assume that an instance is an
unsaved transient instance if:

■ The identifier property (if it exists) is null.

■ The version property (if it exists) is null.

■ You supply an unsaved-value in the mapping document for the class, and
the value of the identifier property matches.

■ You supply an unsaved-value in the mapping document for the version
property, and the value of the version property matches.

■ You supply a Hibernate Interceptor and return Boolean.TRUE from Inter-
ceptor.isUnsaved() after checking the instance in your code.

In our domain model, we have used the nullable type java.lang.Long as our iden-
tifier property type everywhere. Since we’re using generated, synthetic identifiers,
this solves the problem. New instances have a null identifier property value, so
Hibernate treats them as transient. Detached instances have a non-null identifier
value, so Hibernate treats them properly too.

However, if we had used the primitive type long in our persistent classes, we
would have needed to use the following identifier mapping in all our classes:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 139

<class name="Category" table="CATEGORY">

 <id name="id" unsaved-value="0">
 <generator class="native"/>
 </id>

</class>

The unsaved-value attribute tells Hibernate to treat instances of Category with an
identifier value of 0 as newly instantiated transient instances. The default value for
the attribute unsaved-value is null; so, since we’ve chosen Long as our identifier
property type, we can omit the unsaved-value attribute in our auction application
classes (we use the same identifier type everywhere).

This approach works nicely for synthetic identifiers, but it breaks down in
the case of keys assigned by the application, including composite keys in
legacy systems. We discuss this issue in chapter 8, section 8.3.1, “Legacy
schemas and composite keys.” Avoid application-assigned (and compos-
ite) keys in new applications if possible.

You now have the knowledge to optimize your Hibernate application and reduce
the number of calls to the persistence manager if you want to save and delete
objects. Check the unsaved-value attributes of all your classes and experiment with
detached objects to get a feeling for the Hibernate transitive persistence model.

We’ll now switch perspectives and look at another important concept: how to get
a graph of persistent objects out of the database (that is, how to load objects).

4.4 Retrieving objects

Retrieving persistent objects from the database is one of the most interesting (and
complex) parts of working with Hibernate. Hibernate provides the following ways
to get objects out of the database:

■ Navigating the object graph, starting from an already loaded object, by
accessing the associated objects through property accessor methods such as
aUser.getAddress().getCity(). Hibernate will automatically load (or pre-
load) nodes of the graph while you navigate the graph if the Session is open.

■ Retrieving by identifier, which is the most convenient and performant
method when the unique identifier value of an object is known.

■ Using the Hibernate Query Language (HQL), which is a full object-oriented

UNSAVED
ASSIGNED

IDENTIFIERS
query language.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

140 CHAPTER 4

Working with persistent objects

■ Using the, Hibernate Criteria API, which provides a type-safe and object-
oriented way to perform queries without the need for string manipulation.
This facility includes queries based on an example object.

■ Using native SQL queries, where Hibernate takes care of mapping the JDBC
result sets to graphs of persistent objects.

In your Hibernate applications, you’ll use a combination of these techniques.
Each retrieval method may use a different fetching strategy—that is, a strategy
that defines what part of the persistent object graph should be retrieved. The goal
is to find the best retrieval method and fetching strategy for every use case in your
application while at the same time minimizing the number of SQL queries for
best performance.

We won’t discuss each retrieval method in much detail in this section; instead
we’ll focus on the basic fetching strategies and how to tune Hibernate mapping
files for best default fetching performance for all methods. Before we look at the
fetching strategies, we’ll give an overview of the retrieval methods. (We mention
the Hibernate caching system but fully explore it in the next chapter.)

Let’s start with the simplest case, retrieval of an object by giving its identifier
value (navigating the object graph should be self-explanatory). You saw a simple
retrieval by identifier earlier in this chapter, but there is more to know about it.

4.4.1 Retrieving objects by identifier

The following Hibernate code snippet retrieves a User object from the database:

User user = (User) session.get(User.class, userID);

The get() method is special because the identifier uniquely identifies a single
instance of a class. Hence it’s common for applications to use the identifier as a
convenient handle to a persistent object. Retrieval by identifier can use the cache
when retrieving an object, avoiding a database hit if the object is already cached.

Hibernate also provides a load() method:

User user = (User) session.load(User.class, userID);

The load() method is older; get() was added to Hibernate’s API due to user
request. The difference is trivial:

■ If load() can’t find the object in the cache or database, an exception is
thrown. The load() method never returns null. The get() method returns
null if the object can’t be found.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 141

■ The load() method may return a proxy instead of a real persistent instance.
A proxy is a placeholder that triggers the loading of the real object when it’s
accessed for the first time; we discuss proxies later in this section. On the
other hand, get() never returns a proxy.

Choosing between get() and load() is easy: If you’re certain the persistent
object exists, and nonexistence would be considered exceptional, load() is a
good option. If you aren’t certain there is a persistent instance with the given
identifier, use get() and test the return value to see if it’s null. Using load() has
a further implication: The application may retrieve a valid reference (a proxy) to a
persistent instance without hitting the database to retrieve its persistent state. So
load() might not throw an exception when it doesn’t find the persistent object
in the cache or database; the exception would be thrown later, when the proxy
is accessed.

Of course, retrieving an object by identifier isn’t as flexible as using arbitrary
queries.

4.4.2 Introducing HQL

The Hibernate Query Language is an object-oriented dialect of the familiar rela-
tional query language SQL. HQL bears close resemblances to ODMG OQL and
EJB-QL; but unlike OQL, it’s adapted for use with SQL databases, and it’s much
more powerful and elegant than EJB-QL (However, EJB-QL 3.0 will be very similar
to HQL.) HQL is easy to learn with basic knowledge of SQL.

HQL isn’t a data-manipulation language like SQL. It’s used only for object
retrieval, not for updating, inserting, or deleting data. Object state synchronization
is the job of the persistence manager, not the developer.

Most of the time, you’ll only need to retrieve objects of a particular class and
restrict by the properties of that class. For example, the following query retrieves a
user by first name:

Query q = session.createQuery("from User u where u.firstname = :fname");
q.setString("fname", "Max");
List result = q.list();

After preparing query q, we bind the identifier value to a named parameter, fname.
The result is returned as a List of User objects.

HQL is powerful, and even though you may not use the advanced features all the
time, you’ll need them for some difficult problems. For example, HQL supports
the following:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

142 CHAPTER 4

Working with persistent objects

■ The ability to apply restrictions to properties of associated objects related
by reference or held in collections (to navigate the object graph using
query language).

■ The ability to retrieve only properties of an entity or entities, without the
overhead of loading the entity itself in a transactional scope. This is some-
times called a report query; it’s more correctly called projection.

■ The ability to order the results of the query.

■ The ability to paginate the results.

■ Aggregation with group by, having, and aggregate functions like sum, min,
and max.

■ Outer joins when retrieving multiple objects per row.

■ The ability to call user-defined SQL functions.

■ Subqueries (nested queries).

We discuss all these features in chapter 7, together with the optional native SQL
query mechanism.

4.4.3 Query by criteria

The Hibernate query by criteria (QBC) API lets you build a query by manipulating cri-
teria objects at runtime. This approach lets you specify constraints dynamically
without direct string manipulations, but it doesn’t lose much of the flexibility or
power of HQL. On the other hand, queries expressed as criteria are often less read-
able than queries expressed in HQL.

Retrieving a user by first name is easy using a Criteria object:

Criteria criteria = session.createCriteria(User.class);
criteria.add(Expression.like("firstname", "Max"));
List result = criteria.list();

A Criteria is a tree of Criterion instances. The Expression class provides static fac-
tory methods that return Criterion instances. Once the desired criteria tree is
built, it’s executed against the database.

Many developers prefer QBC, considering it a more object-oriented approach.
They also like the fact that the query syntax may be parsed and validated at compile
time, whereas HQL expressions aren’t parsed until runtime.

The nice thing about the Hibernate Criteria API is the Criterion framework.
This framework allows extension by the user, which is difficult in the case of a query

language like HQL.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 143

4.4.4 Query by example

As part of the QBC facility, Hibernate supports query by example (QBE). The idea
behind QBE is that the application supplies an instance of the queried class with
certain property values set (to nondefault values). The query returns all persistent
instances with matching property values. QBE isn’t a particularly powerful
approach, but it can be convenient for some applications. The following code snip-
pet demonstrates a Hibernate QBE:

User exampleUser = new User();
exampleUser.setFirstname("Max");
Criteria criteria = session.createCriteria(User.class);
criteria.add(Example.create(exampleUser));
List result = criteria.list();

A typical use case for QBE is a search screen that allows users to specify a range of
property values to be matched by the returned result set. This kind of functionality
can be difficult to express cleanly in a query language; string manipulations would
be required to specify a dynamic set of constraints.

Both the QBC API and the example query mechanism are discussed in more
detail in chapter 7.

You now know the basic retrieval options in Hibernate. We focus on the strate-
gies for fetching object graphs in the rest of this section. A fetching strategy
defines what part of the object graph (or, what subgraph) is retrieved with a query
or load operation.

4.4.5 Fetching strategies

In traditional relational data access, you’d fetch all the data required for a particu-
lar computation with a single SQL query, taking advantage of inner and outer joins
to retrieve related entities. Some primitive ORM implementations fetch data piece-
meal, with many requests for small chunks of data in response to the application’s
navigating a graph of persistent objects. This approach doesn’t make efficient use
of the relational database’s join capabilities. In fact, this data access strategy scales
poorly by nature. One of the most difficult problems in ORM—probably the most
difficult—is providing for efficient access to relational data, given an application
that prefers to treat the data as a graph of objects.

For the kinds of applications we’ve often worked with (multi-user, distributed,
web, and enterprise applications), object retrieval using many round trips to/from
the database is unacceptable. Hence we argue that tools should emphasize the R in

ORM to a much greater extent than has been traditional.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

144 CHAPTER 4

Working with persistent objects

The problem of fetching object graphs efficiently (with minimal access to the
database) has often been addressed by providing association-level fetching strat-
egies specified in metadata of the association mapping. The trouble with this
approach is that each piece of code that uses an entity requires a different set of
associated objects. But this isn’t enough. We argue that what is needed is sup-
port for fine-grained runtime association fetching strategies. Hibernate supports
both, it lets you specify a default fetching strategy in the mapping file and then
override it at runtime in code.

Hibernate allows you to choose among four fetching strategies for any associa-
tion, in association metadata and at runtime:

■ Immediate fetching—The associated object is fetched immediately, using a
sequential database read (or cache lookup).

■ Lazy fetching—The associated object or collection is fetched “lazily,” when
it’s first accessed. This results in a new request to the database (unless the
associated object is cached).

■ Eager fetching—The associated object or collection is fetched together with
the owning object, using an SQL outer join, and no further database request
is required.

■ Batch fetching—This approach may be used to improve the performance of
lazy fetching by retrieving a batch of objects or collections when a lazy asso-
ciation is accessed. (Batch fetching may also be used to improve the perfor-
mance of immediate fetching.)

Let’s look more closely at each fetching strategy.

Immediate fetching
Immediate association fetching occurs when you retrieve an entity from the data-
base and then immediately retrieve another associated entity or entities in a fur-
ther request to the database or cache. Immediate fetching isn’t usually an efficient
fetching strategy unless you expect the associated entities to almost always be
cached already.

Lazy fetching
When a client requests an entity and its associated graph of objects from the data-
base, it isn’t usually necessary to retrieve the whole graph of every (indirectly) asso-
ciated object. You wouldn’t want to load the whole database into memory at once;

for example, loading a single Category shouldn’t trigger the loading of all Items in
that category.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 145

Lazy fetching lets you decide how much of the object graph is loaded in the first
database hit and which associations should be loaded only when they’re first
accessed. Lazy fetching is a foundational concept in object persistence and the
first step to attaining acceptable performance.

We recommend that, to start with, all associations be configured for lazy (or per-
haps batched lazy) fetching in the mapping file. This strategy may then be overrid-
den at runtime by queries that force eager fetching to occur.

Eager (outer join) fetching
Lazy association fetching can help reduce database load and is often a good
default strategy. However, it’s a bit like a blind guess as far as performance optimi-
zation goes.

Eager fetching lets you explicitly specify which associated objects should be loaded
together with the referencing object. Hibernate can then return the associated
objects in a single database request, utilizing an SQL OUTER JOIN. Performance opti-
mization in Hibernate often involves judicious use of eager fetching for particular
transactions. Hence, even though default eager fetching may be declared in the
mapping file, it’s more common to specify the use of this strategy at runtime for a
particular HQL or criteria query.

Batch fetching
Batch fetching isn’t strictly an association fetching strategy; it’s a technique that may
help improve the performance of lazy (or immediate) fetching. Usually, when you
load an object or collection, your SQL WHERE clause specifies the identifier of the
object or object that owns the collection. If batch fetching is enabled, Hibernate
looks to see what other proxied instances or uninitialized collections are refer-
enced in the current session and tries to load them at the same time by specifying
multiple identifier values in the WHERE clause.

We aren’t great fans of this approach; eager fetching is almost always faster.
Batch fetching is useful for inexperienced users who wish to achieve acceptable
performance in Hibernate without having to think too hard about the SQL that will
be executed. (Note that batch fetching may be familiar to you, since it’s used by
many EJB2 engines.)

We’ll now declare the fetching strategy for some associations in our mapping
metadata.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

146 CHAPTER 4

Working with persistent objects

4.4.6 Selecting a fetching strategy in mappings

Hibernate lets you select default association fetching strategies by specifying
attributes in the mapping metadata. You can override the default strategy using fea-
tures of Hibernate’s query methods, as you’ll see in chapter 7. A minor caveat: You
don’t have to understand every option presented in this section immediately; we
recommend that you get an overview first and use this section as a reference when
you’re optimizing the default fetching strategies in your application.

A wrinkle in Hibernate’s mapping format means that collection mappings func-
tion slightly differently than single-point associations; so, we’ll cover the two cases
separately. Let’s first consider both ends of the bidirectional association between
Bid and Item.

Single point associations
For a <many-to-one> or <one-to-one> association, lazy fetching is possible only if
the associated class mapping enables proxying. For the Item class, we enable prox-
ying by specifying lazy="true":

<class name="Item" lazy="true">

Now, remember the association from Bid to Item:

<many-to-one name="item" class="Item">

When we retrieve a Bid from the database, the association property may hold an
instance of a Hibernate generated subclass of Item that delegates all method invoca-
tions to a different instance of Item that is fetched lazily from the database (this is
the more elaborate definition of a Hibernate proxy).

Hibernate uses two different instances so that even polymorphic associations
can be proxied—when the proxied object is fetched, it may be an instance of a
mapped subclass of Item (if there were any subclasses of Item, that is). We can even
choose any interface implemented by the Item class as the type of the proxy. To do
so, we declare it using the proxy attribute, instead of specifying lazy="true":

<class name="Item" proxy="ItemInterface">

As soon as we declare the proxy or lazy attribute on Item, any single-point associa-
tion to Item is proxied and fetched lazily, unless that association overrides the
fetching strategy by declaring the outer-join attribute.

There are three possible values for outer-join:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 147

■ outer-join="auto"—The default. When the attribute isn’t specified; Hiber-
nate fetches the associated object lazily if the associated class has proxying
enabled, or eagerly using an outer join if proxying is disabled (default).

■ outer-join="true"—Hibernate always fetches the association eagerly using
an outer join, even if proxying is enabled. This allows you to choose differ-
ent fetching strategies for different associations to the same proxied class.

■ outer-join="false"—Hibernate never fetches the association using an
outer join, even if proxying is disabled. This is useful if you expect the asso-
ciated object to exist in the second-level cache (see chapter 5). If it isn’t
available in the second-level cache, the object is fetched immediately using
an extra SQL SELECT.

So, if we wanted to reenable eager fetching for the association, now that proxying
is enabled, we would specify

<many-to-one name="item" class="Item" outer-join="true">

For a one-to-one association (discussed in more detail in chapter 6), lazy fetching
is conceptually possible only when the associated object always exists. We indicate
this by specifying constrained="true". For example, if an item can have only one
bid, the mapping for the Bid is

<one-to-one name="item" class="Item" constrained="true">

The constrained attribute has a slightly similar interpretation to the not-null
attribute of a <many-to-one> mapping. It tells Hibernate that the associated object
is required and thus cannot be null.

To enable batch fetching, we specify the batch-size in the mapping for Item:

<class name="Item" lazy="true" batch-size="9">

The batch size limits the number of items that may be retrieved in a single batch.
Choose a reasonably small number here.

You’ll meet the same attributes (outer-join, batch-size, and lazy) when we
consider collections, but the interpretation is slightly different.

Collections
In the case of collections, fetching strategies apply not just to entity associations,
but also to collections of values (for example, a collection of strings could be
fetched by outer join).
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

148 CHAPTER 4

Working with persistent objects

Just like classes, collections have their own proxies, which we usually call collection
wrappers. Unlike classes, the collection wrapper is always there, even if lazy fetching
is disabled (Hibernate needs the wrapper to detect collection modifications).

Collection mappings may declare a lazy attribute, an outer-join attribute,
neither, or both (specifying both isn’t meaningful). The meaningful options are
as follows:

■ Neither attribute specified—This option is equivalent to outer-join="false"
lazy="false". The collection is fetched from the second-level cache or by
an immediate extra SQL SELECT. This option is the default and is most useful
when the second-level cache is enabled for this collection.

■ outer-join="true"—Hibernate fetches the association eagerly using an
outer join. At the time of this writing, Hibernate is able to fetch only one
collection per SQL SELECT, so it isn’t possible to declare multiple collections
belonging to the same persistent class with outer-join="true".

■ lazy="true"—Hibernate fetches the collection lazily, when it’s first
accessed.

We don’t recommend eager fetching for collections, so we’ll map the item’s collec-
tion of bids with lazy="true". This option is almost always used for collection map-
pings (it should be the default, and we recommend that you consider it as a default
for all your collection mappings):

<set name="bids" lazy="true">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

We can even enable batch fetching for the collection. In this case, the batch size
doesn’t refer to the number of bids in the batch; it refers to the number of collec-
tions of bids:

<set name="bids" lazy="true" batch-size="9">
 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
</set>

This mapping tells Hibernate to load up to nine collections of bids in one batch,
depending on how many uninitialized collections of bids are currently present in
the items associated with the session. In other words, if there are five Item instances
with persistent state in a Session, and all have an uninitialized bids collection,

Hibernate will automatically load all five collections in a single SQL query if one is
accessed. If there are 11 items, only 9 collections will be fetched. Batch fetching

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 149

can significantly reduce the number of queries required for hierarchies of objects
(for example, when loading the tree of parent and child Category objects).

Let’s talk about a special case: many-to-many associations (we discuss this map-
ping in more detail in chapter 6). You usually use a link table (some developers also
call it relationship table or association table) that holds only the key values of the two
associated tables and therefore allows a many-to-many multiplicity. This additional
table has to be considered if you decide to use eager fetching. Look at the following
straightforward many-to-many example, which maps the association from Category
to Item:

<set name="items" outer-join="true" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <many-to-many column="ITEM_ID" class="Item"/>
</set>

In this case, the eager fetching strategy refers only to the association table
CATEGORY_ITEM. If we load a Category with this fetching strategy, Hibernate will
automatically fetch all link entries from CATEGORY_ITEM in a single outer join SQL
query, but not the item instances from ITEM!

The entities contained in the many-to-many association can of course also be
fetched eagerly with the same SQL query. The <many-to-many> element allows this
behavior to be customized:

<set name="items" outer-join="true" table="CATEGORY_ITEM">
 <key column="CATEGORY_ID"/>
 <many-to-many column="ITEM_ID" outer-join="true" class="Item"/>
</set>

Hibernate will now fetch all Items in a Category with a single outer join query when
the Category is loaded. However, keep in mind that we usually recommend lazy
loading as the default fetching strategy and that Hibernate is limited to one eagerly
fetched collection per mapped persistent class.

Setting the fetch depth
We’ll now discuss a global fetching strategy setting: the maximum fetch depth. This
setting controls the number of outer-joined tables Hibernate will use in a single
SQL query. Consider the complete association chain from Category to Item, and
from Item to Bid. The first is a many-to-many association and the second is a one-
to-many; hence both associations are mapped with collection elements. If we
declare outer-join="true" for both associations (don’t forget the special <many-
to-many> declaration) and load a single Category, how many queries will Hibernate

execute? Will only the Items be eagerly fetched, or also all the Bids of each Item?

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

150 CHAPTER 4

Working with persistent objects

You probably expect a single query, with an outer join operation including
the CATEGORY, CATEGORY_ITEM, ITEM, and BID tables. However, this isn’t the case
by default.

Hibernate’s outer join fetch behavior is controlled with the global configuration
option hibernate.max_fetch_depth. If you set this to 1 (also the default), Hiber-
nate will fetch only the Category and the link entries from the CATEGORY_ITEM asso-
ciation table. If you set it to 2, Hibernate executes an outer join that also includes
the Items in the same SQL query. Setting this option to 3 joins all four tables in one
SQL statement and also loads all Bids.

Recommended values for the fetch depth depend on the join performance and
the size of the database tables; test your applications with low values (less than 4)
first, and decrease or increase the number while tuning your application. The glo-
bal maximum fetch depth also applies to single-ended association (<many-to-one>,
<one-to-one>) mapped with an eager fetching strategy.

Keep in mind that eager fetching strategies declared in the mapping metadata
are effective only if you use retrieval by identifier, use the criteria query API, or
navigate through the object graph manually. Any HQL query may specify its own
fetching strategy at runtime, thus ignoring the mapping defaults. You can also
override the defaults (that is, not ignore them) with criteria queries. This is an
important difference, and we cover it in more detail in chapter 7, section 7.3.2,
“Fetching associations.”

However, you may sometimes simply like to initialize a proxy or a collection
wrapper manually with a simple API call.

Initializing lazy associations
A proxy or collection wrapper is automatically initialized when any of its methods
are invoked (except the identifier property getter, which may return the identifier
value without fetching the underlying persistent object). However, it’s only possi-
ble to initialize a proxy or collection wrapper if it’s currently associated with an
open Session. If you close the session and try to access an uninitialized proxy or
collection, Hibernate throws a runtime exception.

Because of this behavior, it’s sometimes useful to explicitly initialize an object
before closing the session. This approach isn’t as flexible as retrieving the com-
plete required object subgraph with an HQL query, using arbitrary fetching strate-
gies at runtime.

We use the static method Hibernate.initialize() for manual initialization:
Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects 151

Category cat = (Category) session.get(Category.class, id);
Hibernate.initialize(cat.getItems());

tx.commit();
session.close();

Iterator iter = cat.getItems().iterator();
...

Hibernate.initialize() may be passed a collection wrapper, as in this example, or
a proxy. You may also, in similar rare cases, check the current state of a property by
calling Hibernate.isInitialized(). (Note that initialize() doesn’t cascade to
any associated objects.)

Another solution for this problem is to keep the session open until the applica-
tion thread finishes, so you can navigate the object graph whenever you like and
have Hibernate automatically initialize all lazy references. This is a problem of
application design and transaction demarcation; we discuss it again in chapter 8,
section 8.1, “Designing layered applications.” However, your first choice should be
to fetch the complete required graph in the first place, using HQL or criteria que-
ries, with a sensible and optimized default fetching strategy in the mapping meta-
data for all other cases.

4.4.7 Tuning object retrieval

Let’s look at the steps involved when you’re tuning the object retrieval operations
in your application:

1 Enable the Hibernate SQL log, as described in chapter 2. You should also be
prepared to read, understand, and evaluate SQL queries and their perfor-
mance characteristics for your specific relational model: Will a single join
operation be faster than two selects? Are all the indexes used properly, and
what is the cache hit ratio inside the database? Get your DBA to help you
with the performance evaluation; only she will have the knowledge to
decide which SQL execution plan is the best.

2 Step through your application use case by use case and note how many
and what SQL statements Hibernate executes. A use case can be a single
screen in your web application or a sequence of user dialogs. This step
also involves collecting the object-retrieval methods you use in each use
case: walking the graph, retrieval by identifier, HQL, and criteria queries.
Your goal is to bring down the number (and complexity) of SQL queries
for each use case by tuning the default fetching strategies in metadata.
3 You may encounter two common issues:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

152 CHAPTER 4

Working with persistent objects

■ If the SQL statements use join operations that are too complex and
slow, set outer-join to false for <many-to-one> associations (this is
enabled by default). Also try to tune with the global hiber-

nate.max_fetch_depth configuration option, but keep in mind that this
is best left at a value between 1 and 4.

■ If too many SQL statements are executed, use lazy="true" for all col-
lection mappings; by default, Hibernate will execute an immediate
additional fetch for the collection elements (which, if they’re entities,
can cascade further into the graph). In rare cases, if you’re sure, enable
outer-join="true" and disable lazy loading for particular collections.
Keep in mind that only one collection property per persistent class may
be fetched eagerly. Use batch fetching with values between 3 and 10 to
further optimize collection fetching if the given unit of work involves
several “of the same” collections or if you’re accessing a tree of parent
and child objects.

4 After you set a new fetching strategy, rerun the use case and check the gen-
erated SQL again. Note the SQL statements, and go to the next use case.

5 After you optimize all use cases, check every one again and see if any opti-
mizations had side effects for others. With some experience, you’ll be able
to avoid any negative effects and get it right the first time.

This optimization technique isn’t only practical for the default fetching strategies;
you can also use it to tune HQL and criteria queries, which can ignore and override
the default fetching for specific use cases and units of work. We discuss runtime
fetching in chapter 7.

In this section, we’ve started to think about performance issues, especially issues
related to association fetching. Of course, the quickest way to fetch a graph of
objects is to fetch it from the cache in memory, as shown in the next chapter.

4.5 Summary

The dynamic aspects of the object/relational mismatch are just as important as the
better known and better understood structural mismatch problems. In this chap-
ter, we were primarily concerned with the lifecycle of objects with respect to the
persistence mechanism. Now you understand the three object states defined by
Hibernate: persistent, detached, and transient. Objects transition between states
when you invoke methods of the Session interface or create and remove refer-

ences from a graph of already persistent instances. This latter behavior is governed

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 153

by the configurable cascade styles, Hibernate’s model for transitive persistence.
This model lets you declare the cascading of operations (such as saving or dele-
tion) on an association basis, which is more powerful and flexible than the tradi-
tional persistence by reachability model. Your goal is to find the best cascading style for
each association and therefore minimize the number of persistence manager calls
you have to make when storing objects.

Retrieving objects from the database is equally important: You can walk the
graph of domain objects by accessing properties and let Hibernate transparently
fetch objects. You can also load objects by identifier, write arbitrary queries in the
HQL, or create an object-oriented representation of your query using the query by
criteria API. In addition, you can use native SQL queries in special cases.

Most of these object-retrieval methods use the default fetching strategies we
defined in mapping metadata (HQL ignores them; criteria queries can override
them). The correct fetching strategy minimizes the number of SQL statements that
have to be executed by lazily, eagerly, or batch-fetching objects. You optimize your
Hibernate application by analyzing the SQL executed in each use case and tuning
the default and runtime fetching strategies.

Next we explore the closely related topics of transactions and caching.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Transactions,
concurrency,
and caching
Transactions, concurrency, and caching

This chapter covers

■ Database transactions and locking
■ Long-running application transactions
■ The Hibernate first- and second-level caches
■ The caching system in practice with

CaveatEmptor
154

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Transactions, concurrency, and caching 155

Now that you understand the basics of object/relational mapping with Hibernate,
let’s take a closer look at one of the core issues in database application design:
transaction management. In this chapter, we examine how you use Hibernate to man-
age transactions, how concurrency is handled, and how caching is related to both
aspects. Let’s look at our example application.

Some application functionality requires that several different things be done
together. For example, when an auction finishes, our CaveatEmptor application
has to perform four different tasks:

1 Mark the winning (highest amount) bid.

2 Charge the seller the cost of the auction.

3 Charge the successful bidder the price of the winning bid.

4 Notify the seller and the successful bidder.

What happens if we can’t bill the auction costs because of a failure in the external
credit card system? Our business requirements might state that either all listed
actions must succeed or none must succeed. If so, we call these steps collectively a
transaction or unit of work. If only one step fails, the whole unit of work must fail. We
say that the transaction is atomic: Several operations are grouped together as a sin-
gle indivisible unit.

Furthermore, transactions allow multiple users to work concurrently with the
same data without compromising the integrity and correctness of the data; a par-
ticular transaction shouldn’t be visible to and shouldn’t influence other concur-
rently running transactions. Several different strategies are used to implement this
behavior, which is called isolation. We’ll explore them in this chapter.

Transactions are also said to exhibit consistency and durability. Consistency means
that any transaction works with a consistent set of data and leaves the data in a con-
sistent state when the transaction completes. Durability guarantees that once a
transaction completes, all changes made during that transaction become persis-
tent and aren’t lost even if the system subsequently fails. Atomicity, consistency, iso-
lation, and durability are together known as the ACID criteria.

We begin this chapter with a discussion of system-level database transactions,
where the database guarantees ACID behavior. We’ll look at the JDBC and JTA APIs
and see how Hibernate, working as a client of these APIs, is used to control data-
base transactions.

In an online application, database transactions must have extremely short
lifespans. A database transaction should span a single batch of database operations,

interleaved with business logic. It should certainly not span interaction with the

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

156 CHAPTER 5

Transactions, concurrency, and caching

user. We’ll augment your understanding of transactions with the notion of a long-
running application transaction, where database operations occur in several batches,
alternating with user interaction. There are several ways to implement application
transactions in Hibernate applications, all of which are discussed in this chapter.
Finally, the subject of caching is much more closely related to transactions than it
might appear at first sight. In the second half of this chapter, armed with an under-
standing of transactions, we explore Hibernate’s sophisticated cache architecture.
You’ll learn which data is a good candidate for caching and how to handle concur-
rency of the cache. We’ll then enable caching in the CaveatEmptor application.

Let’s begin with the basics and see how transactions work at the lowest level,
the database.

5.1 Understanding database transactions

Databases implement the notion of a unit of work as a database transaction (some-
times called a system transaction).

A database transaction groups data-access operations. A transaction is guaran-
teed to end in one of two ways: it’s either committed or rolled back. Hence, database
transactions are always truly atomic. In figure 5.1, you can see this graphically.

If several database operations should be executed inside a transaction, you must
mark the boundaries of the unit of work. You must start the transaction and, at
some point, commit the changes. If an error occurs (either while executing oper-
ations or when committing the changes), you have to roll back the transaction to
leave the data in a consistent state. This is known as transaction demarcation, and
(depending on the API you use) it involves more or less manual intervention.

begin
Transaction

commit

rollback

Transaction Succeeded

Transaction Failed

Initial State

Figure 5.1
System states during
a transaction
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 157

You may already have experience with two transaction-handling programming
interfaces: the JDBC API and the JTA.

5.1.1 JDBC and JTA transactions

In a non-managed environment, the JDBC API is used to mark transaction bound-
aries. You begin a transaction by calling setAutoCommit(false) on a JDBC connec-
tion and end it by calling commit(). You may, at any time, force an immediate
rollback by calling rollback(). (Easy, huh?)

FAQ What auto commit mode should you use? A magical setting that is often a
source of confusion is the JDBC connection’s auto commit mode. If a data-
base connection is in auto commit mode, the database transaction will be
committed immediately after each SQL statement, and a new transaction
will be started. This can be useful for ad hoc database queries and ad hoc
data updates.

Auto commit mode is almost always inappropriate in an application,
however. An application doesn’t perform ad hoc or any unplanned que-
ries; instead, it executes a preplanned sequence of related operations
(which are, by definition, never ad hoc). Therefore, Hibernate automati-
cally disables auto commit mode as soon as it fetches a connection (from
a connection provider—that is, a connection pool). If you supply your
own connection when you open the Session, it’s your responsibility to
turn off auto commit!

Note that some database systems enable auto commit by default for each
new connection, but others don’t. You might want to disable auto commit
in your global database system configuration to ensure that you never run
into any problems. You may then enable auto commit only when you exe-
cute ad hoc queries (for example, in your database SQL query tool).

In a system that stores data in multiple databases, a particular unit of work may
involve access to more than one data store. In this case, you can’t achieve atomicity
using JDBC alone. You require a transaction manager with support for distributed
transactions (two-phase commit). You communicate with the transaction manager
using the JTA.

In a managed environment, JTA is used not only for distributed transactions, but
also for declarative container managed transactions (CMT). CMT allows you to avoid
explicit transaction demarcation calls in your application source code; rather,
transaction demarcation is controlled by a deployment-specific descriptor. This
descriptor defines how a transaction context propagates when a single thread passes

through several different EJBs.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

158 CHAPTER 5

Transactions, concurrency, and caching

We aren’t interested in the details of direct JDBC or JTA transaction demarca-
tion. You’ll be using these APIs only indirectly.

Hibernate communicates with the database via a JDBC Connection; hence it must
support both APIs. In a stand-alone (or web-based) application, only the JDBC
transaction handling is available; in an application server, Hibernate can use JTA.
Since we would like Hibernate application code to look the same in both managed
and non-managed environments, Hibernate provides its own abstraction layer, hid-
ing the underlying transaction API. Hibernate allows user extension, so you could
even plug in an adaptor for the CORBA transaction service.

Transaction management is exposed to the application developer via the Hiber-
nate Transaction interface. You aren’t forced to use this API—Hibernate lets you
control JTA or JDBC transactions directly, but this usage is discouraged, and we
won’t discuss this option.

5.1.2 The Hibernate Transaction API

The Transaction interface provides methods for declaring the boundaries of a data-
base transaction. See listing 5.1 for an example of the basic usage of Transaction.

Session session = sessions.openSession();
Transaction tx = null;
try {
 tx = session.beginTransaction();

 concludeAuction();

 tx.commit();
} catch (Exception e) {
 if (tx != null) {
 try {
 tx.rollback();
 } catch (HibernateException he) {
 //log he and rethrow e
 }
 }
 throw e;
} finally {
 try {
 session.close();
 } catch (HibernateException he) {
 throw he;
 }
}

Listing 5.1 Using the Hibernate Transaction API
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 159

The call to session.beginTransaction() marks the beginning of a database trans-
action. In the case of a non-managed environment, this starts a JDBC transaction
on the JDBC connection. In the case of a managed environment, it starts a new JTA
transaction if there is no current JTA transaction, or joins the existing current JTA
transaction. This is all handled by Hibernate—you shouldn’t need to care about
the implementation.

The call to tx.commit()synchronizes the Session state with the database. Hiber-
nate then commits the underlying transaction if and only if beginTransaction()
started a new transaction (in both managed and non-managed cases). If begin-
Transaction() did not start an underlying database transaction, commit() only syn-
chronizes the Session state with the database; it’s left to the responsible party (the
code that started the transaction in the first place) to end the transaction. This is
consistent with the behavior defined by JTA.

If concludeAuction() threw an exception, we must force the transaction to roll
back by calling tx.rollback(). This method either rolls back the transaction
immediately or marks the transaction for “rollback only” (if you’re using CMTs).

FAQ Is it faster to roll back read-only transactions? If code in a transaction reads
data but doesn’t modify it, should you roll back the transaction instead of
committing it? Would this be faster?

Apparently some developers found this approach to be faster in some
special circumstances, and this belief has now spread through the com-
munity. We tested this with the more popular database systems and
found no difference. We also failed to discover any source of real num-
bers showing a performance difference. There is also no reason why a
database system should be implemented suboptimally—that is, why it
shouldn’t use the fastest transaction cleanup algorithm internally. Always
commit your transaction and roll back if the commit fails.

It’s critically important to close the Session in a finally block in order to ensure that
the JDBC connection is released and returned to the connection pool. (This step
is the responsibility of the application, even in a managed environment.)

NOTE The example in listing 5.1 is the standard idiom for a Hibernate unit of
work; therefore, it includes all exception-handling code for the checked
HibernateException. As you can see, even rolling back a Transaction
and closing the Session can throw an exception. You don’t want to use this
example as a template in your own application, since you’d rather hide the
exception handling with generic infrastructure code. You can, for exam-
ple, use a utility class to convert the HibernateException to an unchecked

runtime exception and hide the details of rolling back a transaction and

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

160 CHAPTER 5

Transactions, concurrency, and caching

closing the session. We discuss this question of application design in more
detail in chapter 8, section 8.1, “Designing layered applications.”

However, there is one important aspect you must be aware of: the Ses-
sion has to be immediately closed and discarded (not reused) when an
exception occurs. Hibernate can’t retry failed transactions. This is no
problem in practice, because database exceptions are usually fatal (con-
straint violations, for example) and there is no well-defined state to con-
tinue after a failed transaction. An application in production shouldn’t
throw any database exceptions either.

We’ve noted that the call to commit() synchronizes the Session state with the data-
base. This is called flushing, a process you automatically trigger when you use the
Hibernate Transaction API.

5.1.3 Flushing the Session

The Hibernate Session implements transparent write behind. Changes to the domain
model made in the scope of a Session aren’t immediately propagated to the data-
base. This allows Hibernate to coalesce many changes into a minimal number of
database requests, helping minimize the impact of network latency.

For example, if a single property of an object is changed twice in the same
Transaction, Hibernate only needs to execute one SQL UPDATE. Another exam-
ple of the usefulness of transparent write behind is that Hibernate can take
advantage of the JDBC batch API when executing multiple UPDATE, INSERT, or
DELETE statements.

Hibernate flushes occur only at the following times:

■ When a Transaction is committed

■ Sometimes before a query is executed

■ When the application calls Session.flush() explicitly

Flushing the Session state to the database at the end of a database transaction is
required in order to make the changes durable and is the common case. Hibernate
doesn’t flush before every query. However, if there are changes held in memory that
would affect the results of the query, Hibernate will, by default, synchronize first.

You can control this behavior by explicitly setting the Hibernate FlushMode via a
call to session.setFlushMode(). The flush modes are as follows:

■ FlushMode.AUTO—The default. Enables the behavior just described.

■ FlushMode.COMMIT—Specifies that the session won’t be flushed before query
execution (it will be flushed only at the end of the database transaction). Be
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 161

aware that this setting may expose you to stale data: modifications you made
to objects only in memory may conflict with the results of the query.

■ FlushMode.NEVER—Lets you specify that only explicit calls to flush() result
in synchronization of session state with the database.

We don’t recommend that you change this setting from the default. It’s provided
to allow performance optimization in rare cases. Likewise, most applications rarely
need to call flush() explicitly. This functionality is useful when you’re working
with triggers, mixing Hibernate with direct JDBC, or working with buggy JDBC driv-
ers. You should be aware of the option but not necessarily look out for use cases.

Now that you understand the basic usage of database transactions with the
Hibernate Transaction interface, let’s turn our attention more closely to the sub-
ject of concurrent data access.

It seems as though you shouldn’t have to care about transaction isolation—the
term implies that something either is or is not isolated. This is misleading. Complete
isolation of concurrent transactions is extremely expensive in terms of application
scalability, so databases provide several degrees of isolation. For most applications,
incomplete transaction isolation is acceptable. It’s important to understand the
degree of isolation you should choose for an application that uses Hibernate and
how Hibernate integrates with the transaction capabilities of the database.

5.1.4 Understanding isolation levels

Databases (and other transactional systems) attempt to ensure transaction isolation,
meaning that, from the point of view of each concurrent transaction, it appears
that no other transactions are in progress.

Traditionally, this has been implemented using locking. A transaction may place
a lock on a particular item of data, temporarily preventing access to that item by
other transactions. Some modern databases such as Oracle and PostgreSQL imple-
ment transaction isolation using multiversion concurrency control, which is generally
considered more scalable. We’ll discuss isolation assuming a locking model (most
of our observations are also applicable to multiversion concurrency).

This discussion is about database transactions and the isolation level provided
by the database. Hibernate doesn’t add additional semantics; it uses whatever is
available with a given database. If you consider the many years of experience that
database vendors have had with implementing concurrency control, you’ll clearly
see the advantage of this approach. Your part, as a Hibernate application devel-
oper, is to understand the capabilities of your database and how to change the data-
base isolation behavior if needed in your particular scenario (and by your data

integrity requirements).

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

162 CHAPTER 5

Transactions, concurrency, and caching

Isolation issues
First, let’s look at several phenomena that break full transaction isolation. The
ANSI SQL standard defines the standard transaction isolation levels in terms of
which of these phenomena are permissible:

■ Lost update—Two transactions both update a row and then the second trans-
action aborts, causing both changes to be lost. This occurs in systems that
don’t implement any locking. The concurrent transactions aren’t isolated.

■ Dirty read—One transaction reads changes made by another transaction that
hasn’t yet been committed. This is very dangerous, because those changes
might later be rolled back.

■ Unrepeatable read—A transaction reads a row twice and reads different state
each time. For example, another transaction may have written to the row,
and committed, between the two reads.

■ Second lost updates problem—A special case of an unrepeatable read. Imagine
that two concurrent transactions both read a row, one writes to it and com-
mits, and then the second writes to it and commits. The changes made by
the first writer are lost.

■ Phantom read—A transaction executes a query twice, and the second result
set includes rows that weren’t visible in the first result set. (It need not nec-
essarily be exactly the same query.) This situation is caused by another trans-
action inserting new rows between the execution of the two queries.

Now that you understand all the bad things that could occur, we can define the var-
ious transaction isolation levels and see what problems they prevent.

Isolation levels
The standard isolation levels are defined by the ANSI SQL standard but aren’t par-
ticular to SQL databases. JTA defines the same isolation levels, and you’ll use these
levels to declare your desired transaction isolation later:

■ Read uncommitted—Permits dirty reads but not lost updates. One transaction
may not write to a row if another uncommitted transaction has already writ-
ten to it. Any transaction may read any row, however. This isolation level
may be implemented using exclusive write locks.

■ Read committed—Permits unrepeatable reads but not dirty reads. This may
be achieved using momentary shared read locks and exclusive write locks.

Reading transactions don’t block other transactions from accessing a row.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 163

However, an uncommitted writing transaction blocks all other transactions
from accessing the row.

■ Repeatable read—Permits neither unrepeatable reads nor dirty reads. Phantom
reads may occur. This may be achieved using shared read locks and exclusive
write locks. Reading transactions block writing transactions (but not other
reading transactions), and writing transactions block all other transactions.

■ Serializable—Provides the strictest transaction isolation. It emulates serial
transaction execution, as if transactions had been executed one after
another, serially, rather than concurrently. Serializability may not be imple-
mented using only row-level locks; there must be another mechanism that
prevents a newly inserted row from becoming visible to a transaction that
has already executed a query that would return the row.

It’s nice to know how all these technical terms are defined, but how does that help
you choose an isolation level for your application?

5.1.5 Choosing an isolation level

Developers (ourselves included) are often unsure about what transaction isola-
tion level to use in a production application. Too great a degree of isolation will
harm performance of a highly concurrent application. Insufficient isolation may
cause subtle bugs in our application that can’t be reproduced and that we’ll
never find out about until the system is working under heavy load in the
deployed environment.

Note that we refer to caching and optimistic locking (using versioning) in the fol-
lowing explanation, two concepts explained later in this chapter. You might want
to skip this section and come back when it’s time to make the decision for an
isolation level in your application. Picking the right isolation level is, after all,
highly dependent on your particular scenario. The following discussion contains
recommendations; nothing is carved in stone.

Hibernate tries hard to be as transparent as possible regarding the transactional
semantics of the database. Nevertheless, caching and optimistic locking affect
these semantics. So, what is a sensible database isolation level to choose in a Hiber-
nate application?

First, you eliminate the read uncommitted isolation level. It’s extremely dangerous
to use one transaction’s uncommitted changes in a different transaction. The roll-
back or failure of one transaction would affect other concurrent transactions. Roll-

back of the first transaction could bring other transactions down with it, or perhaps

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

164 CHAPTER 5

Transactions, concurrency, and caching

even cause them to leave the database in an inconsistent state. It’s possible that
changes made by a transaction that ends up being rolled back could be committed
anyway, since they could be read and then propagated by another transaction that
is successful!

Second, most applications don’t need serializable isolation (phantom reads
aren’t usually a problem), and this isolation level tends to scale poorly. Few existing
applications use serializable isolation in production; rather, they use pessimistic
locks (see section 5.1.7, “Using pessimistic locking”), which effectively forces a seri-
alized execution of operations in certain situations.

This leaves you a choice between read committed and repeatable read. Let’s first
consider repeatable read. This isolation level eliminates the possibility that one
transaction could overwrite changes made by another concurrent transaction (the
second lost updates problem) if all data access is performed in a single atomic data-
base transaction. This is an important issue, but using repeatable read isn’t the only
way to resolve it.

Let’s assume you’re using versioned data, something that Hibernate can do for
you automatically. The combination of the (mandatory) Hibernate first-level ses-
sion cache and versioning already gives you most of the features of repeatable read
isolation. In particular, versioning prevents the second lost update problem, and
the first-level session cache ensures that the state of the persistent instances loaded
by one transaction is isolated from changes made by other transactions. So, read
committed isolation for all database transactions would be acceptable if you use
versioned data.

Repeatable read provides a bit more reproducibility for query result sets (only
for the duration of the database transaction), but since phantom reads are still pos-
sible, there isn’t much value in that. (It’s also not common for web applications to
query the same table twice in a single database transaction.)

You also have to consider the (optional) second-level Hibernate cache. It can
provide the same transaction isolation as the underlying database transaction, but
it might even weaken isolation. If you’re heavily using a cache concurrency strategy
for the second-level cache that doesn’t preserve repeatable read semantics (for
example, the read-write and especially the nonstrict-read-write strategies, both dis-
cussed later in this chapter), the choice for a default isolation level is easy: You can’t
achieve repeatable read anyway, so there’s no point slowing down the database. On
the other hand, you might not be using second-level caching for critical classes, or
you might be using a fully transactional cache that provides repeatable read isola-

tion. Should you use repeatable read in this case? You can if you like, but it’s prob-
ably not worth the performance cost.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 165

Setting the transaction isolation level allows you to choose a good default lock-
ing strategy for all your database transactions. How do you set the isolation level?

5.1.6 Setting an isolation level

Every JDBC connection to a database uses the database’s default isolation level, usu-
ally read committed or repeatable read. This default can be changed in the data-
base configuration. You may also set the transaction isolation for JDBC connections
using a Hibernate configuration option:

hibernate.connection.isolation = 4

Hibernate will then set this isolation level on every JDBC connection obtained from
a connection pool before starting a transaction. The sensible values for this option
are as follows (you can also find them as constants in java.sql.Connection):

■ 1—Read uncommitted isolation

■ 2—Read committed isolation

■ 4—Repeatable read isolation

■ 8—Serializable isolation

Note that Hibernate never changes the isolation level of connections obtained
from a datasource provided by the application server in a managed environ-
ment. You may change the default isolation using the configuration of your
application server.

As you can see, setting the isolation level is a global option that affects all con-
nections and transactions. From time to time, it’s useful to specify a more restric-
tive lock for a particular transaction. Hibernate allows you to explicitly specify the
use of a pessimistic lock.

5.1.7 Using pessimistic locking

Locking is a mechanism that prevents concurrent access to a particular item of data.
When one transaction holds a lock on an item, no concurrent transaction can read
and/or modify this item. A lock might be just a momentary lock, held while the
item is being read, or it might be held until the completion of the transaction. A
pessimistic lock is a lock that is acquired when an item of data is read and that is held
until transaction completion.

In read-committed mode (our preferred transaction isolation level), the database
never acquires pessimistic locks unless explicitly requested by the application. Usu-

ally, pessimistic locks aren’t the most scalable approach to concurrency. However,

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

166 CHAPTER 5

Transactions, concurrency, and caching

in certain special circumstances, they may be used to prevent database-level dead-
locks, which result in transaction failure. Some databases (Oracle and PostgreSQL,
for example) provide the SQL SELECT...FOR UPDATE syntax to allow the use of explicit
pessimistic locks. You can check the Hibernate Dialects to find out if your database
supports this feature. If your database isn’t supported, Hibernate will always execute
a normal SELECT without the FOR UPDATE clause.

The Hibernate LockMode class lets you request a pessimistic lock on a particular
item. In addition, you can use the LockMode to force Hibernate to bypass the cache
layer or to execute a simple version check. You’ll see the benefit of these operations
when we discuss versioning and caching.

Let’s see how to use LockMode. If you have a transaction that looks like this

Transaction tx = session.beginTransaction();
Category cat = (Category) session.get(Category.class, catId);
cat.setName("New Name");
tx.commit();

then you can obtain a pessimistic lock as follows:

Transaction tx = session.beginTransaction();
Category cat =
 (Category) session.get(Category.class, catId, LockMode.UPGRADE);
cat.setName("New Name");
tx.commit();

With this mode, Hibernate will load the Category using a SELECT...FOR UPDATE,
thus locking the retrieved rows in the database until they’re released when the
transaction ends.

Hibernate defines several lock modes:

■ LockMode.NONE—Don’t go to the database unless the object isn’t in either
cache.

■ LockMode.READ—Bypass both levels of the cache, and perform a version
check to verify that the object in memory is the same version that currently
exists in the database.

■ LockMode.UPDGRADE—Bypass both levels of the cache, do a version check
(if applicable), and obtain a database-level pessimistic upgrade lock, if
that is supported.

■ LockMode.UPDGRADE_NOWAIT—The same as UPGRADE, but use a SELECT...FOR
UPDATE NOWAIT on Oracle. This disables waiting for concurrent lock releases,
thus throwing a locking exception immediately if the lock can’t be obtained.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding database transactions 167

■ LockMode.WRITE—Is obtained automatically when Hibernate has written to
a row in the current transaction (this is an internal mode; you can’t specify
it explicitly).

By default, load() and get() use LockMode.NONE. LockMode.READ is most useful with
Session.lock() and a detached object. For example:

Item item = ... ;
Bid bid = new Bid();
item.addBid(bid);
...
Transaction tx = session.beginTransaction();
session.lock(item, LockMode.READ);
tx.commit();

This code performs a version check on the detached Item instance to verify that
the database row wasn’t updated by another transaction since it was retrieved,
before saving the new Bid by cascade (assuming that the association from Item to
Bid has cascading enabled).

By specifying an explicit LockMode other than LockMode.NONE, you force Hiber-
nate to bypass both levels of the cache and go all the way to the database. We think
that most of the time caching is more useful than pessimistic locking, so we don’t
use an explicit LockMode unless we really need it. Our advice is that if you have a
professional DBA on your project, let the DBA decide which transactions require
pessimistic locking once the application is up and running. This decision should
depend on subtle details of the interactions between different transactions and
can’t be guessed up front.

Let’s consider another aspect of concurrent data access. We think that most Java
developers are familiar with the notion of a database transaction and that is what
they usually mean by transaction. In this book, we consider this to be a fine-grained
transaction, but we also consider a more coarse-grained notion. Our coarse-
grained transactions will correspond to what the user of the application considers a
single unit of work. Why should this be any different than the fine-grained data-
base transaction?

The database isolates the effects of concurrent database transactions. It should
appear to the application that each transaction is the only transaction currently
accessing the database (even when it isn’t). Isolation is expensive. The database
must allocate significant resources to each transaction for the duration of the
transaction. In particular, as we’ve discussed, many databases lock rows that have
been read or updated by a transaction, preventing access by any other transac-

tion, until the first transaction completes. In highly concurrent systems, these

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

168 CHAPTER 5

Transactions, concurrency, and caching

locks can prevent scalability if they’re held for longer than absolutely necessary.
For this reason, you shouldn’t hold the database transaction (or even the JDBC
connection) open while waiting for user input. (All this, of course, also applies to
a Hibernate Transaction, since it’s merely an adaptor to the underlying database
transaction mechanism.)

If you want to handle long user think time while still taking advantage of the
ACID attributes of transactions, simple database transactions aren’t sufficient. You
need a new concept, long-running application transactions.

5.2 Working with application transactions

Business processes, which might be considered a single unit of work from the point
of view of the user, necessarily span multiple user client requests. This is especially
true when a user makes a decision to update data on the basis of the current state
of that data.

In an extreme example, suppose you collect data entered by the user on multi-
ple screens, perhaps using wizard-style step-by-step navigation. You must read and
write related items of data in several requests (hence several database transactions)
until the user clicks Finish on the last screen. Throughout this process, the data
must remain consistent and the user must be informed of any change to the data
made by any concurrent transaction. We call this coarse-grained transaction con-
cept an application transaction, a broader notion of the unit of work.

We’ll now restate this definition more precisely. Most web applications include
several examples of the following type of functionality:

1 Data is retrieved and displayed on the screen in a first database transaction.

2 The user has an opportunity to view and then modify the data, outside of
any database transaction.

3 The modifications are made persistent in a second database transaction.

In more complicated applications, there may be several such interactions with the
user before a particular business process is complete. This leads to the notion of
an application transaction (sometimes called a long transaction, user transaction or
business transaction). We prefer application transaction or user transaction, since
these terms are less vague and emphasize the transaction aspect from the point of
view of the user.

Since you can’t rely on the database to enforce isolation (or even atomicity) of

concurrent application transactions, isolation becomes a concern of the applica-
tion itself—perhaps even a concern of the user.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Working with application transactions 169

Let’s discuss application transactions with an example.
In our CaveatEmptor application, both the user who posted a comment and any

system administrator can open an Edit Comment screen to delete or edit the text
of a comment. Suppose two different administrators open the edit screen to view
the same comment simultaneously. Both edit the comment text and submit their
changes. At this point, we have three ways to handle the concurrent attempts to
write to the database:

■ Last commit wins—Both updates succeed, and the second update overwrites
the changes of the first. No error message is shown.

■ First commit wins—The first modification is persisted, and the user submit-
ting the second change receives an error message. The user must restart the
business process by retrieving the updated comment. This option is often
called optimistic locking.

■ Merge conflicting updates—The first modification is persisted, and the second
modification may be applied selectively by the user.

The first option, last commit wins, is problematic; the second user overwrites the
changes of the first user without seeing the changes made by the first user or even
knowing that they existed. In our example, this probably wouldn’t matter, but it
would be unacceptable for some other kinds of data. The second and third options
are usually acceptable for most kinds of data. From our point of view, the third
option is just a variation of the second—instead of showing an error message, we
show the message and then allow the user to manually merge changes. There is no
single best solution. You must investigate your own business requirements to
decide among these three options.

The first option happens by default if you don’t do anything special in your
application; so, this option requires no work on your part (or on the part of Hiber-
nate). You’ll have two database transactions: The comment data is loaded in the
first database transaction, and the second database transaction saves the changes
without checking for updates that could have happened in between.

On the other hand, Hibernate can help you implement the second and third
strategies, using managed versioning for optimistic locking.

5.2.1 Using managed versioning

Managed versioning relies on either a version number that is incremented or a
timestamp that is updated to the current time, every time an object is modified. For

Hibernate managed versioning, we must add a new property to our Comment class

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

170 CHAPTER 5

Transactions, concurrency, and caching

and map it as a version number using the <version> tag. First, let’s look at the
changes to the Comment class:

public class Comment {
 ...
 private int version;
 ...
 void setVersion(int version) {
 this.version = version;
 }
 int getVersion() {
 return version;
 }
}

You can also use a public scope for the setter and getter methods. The <version>
property mapping must come immediately after the identifier property mapping
in the mapping file for the Comment class:

<class name="Comment" table="COMMENTS">
 <id ...
 <version name="version" column="VERSION"/>
 ...
</class>

The version number is just a counter value—it doesn’t have any useful semantic
value. Some people prefer to use a timestamp instead:

public class Comment {
 ...
 private Date lastUpdatedDatetime;
 ...
 void setLastUpdatedDatetime(Date lastUpdatedDatetime) {
 this.lastUpdatedDatetime = lastUpdatedDatetime;
 }
 public Date getLastUpdatedDatetime() {
 return lastUpdatedDatetime;
 }
}

<class name="Comment" table="COMMENTS">
 <id/>
 <timestamp name="lastUpdatedDatetime" column="LAST_UPDATED"/>
 ...
</class>

In theory, a timestamp is slightly less safe, since two concurrent transactions might
both load and update the same item all in the same millisecond; in practice, this is
unlikely to occur. However, we recommend that new projects use a numeric version

and not a timestamp.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Working with application transactions 171

You don’t need to set the value of the version or timestamp property yourself;
Hibernate will initialize the value when you first save a Comment, and increment or
reset it whenever the object is modified.

FAQ Is the version of the parent updated if a child is modified? For example, if a
single bid in the collection bids of an Item is modified, is the version
number of the Item also increased by one or not? The answer to that and
similar questions is simple: Hibernate will increment the version number
whenever an object is dirty. This includes all dirty properties, whether
they’re single-valued or collections. Think about the relationship
between Item and Bid: If a Bid is modified, the version of the related
Item isn’t incremented. If we add or remove a Bid from the collection of
bids, the version of the Item will be updated. (Of course, we would make
Bid an immutable class, since it doesn’t make sense to modify bids.)

Whenever Hibernate updates a comment, it uses the version column in the SQL
WHERE clause:

update COMMENTS set COMMENT_TEXT='New comment text', VERSION=3
where COMMENT_ID=123 and VERSION=2

If another application transaction would have updated the same item since it was
read by the current application transaction, the VERSION column would not contain
the value 2, and the row would not be updated. Hibernate would check the row
count returned by the JDBC driver—which in this case would be the number of
rows updated, zero—and throw a StaleObjectStateException.

Using this exception, we might show the user of the second application transac-
tion an error message (“You have been working with stale data because another
user modified it!”) and let the first commit win. Alternatively, we could catch the
exception and show the second user a new screen, allowing the user to manually
merge changes between the two versions.

As you can see, Hibernate makes it easy to use managed versioning to imple-
ment optimistic locking. Can you use optimistic locking and pessimistic locking
together, or do you have to make a decision for one? And why is it called optimistic?

An optimistic approach always assumes that everything will be OK and that con-
flicting data modifications are rare. Instead of being pessimistic and blocking con-
current data access immediately (and forcing execution to be serialized),
optimistic concurrency control will only block at the end of a unit of work and raise
an error.

Both strategies have their place and uses, of course. Multiuser applications usu-

ally default to optimistic concurrency control and use pessimistic locks when

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

172 CHAPTER 5

Transactions, concurrency, and caching

appropriate. Note that the duration of a pessimistic lock in Hibernate is a single
database transaction! This means you can’t use an exclusive lock to block concur-
rent access longer than a single database transaction. We consider this a good
thing, because the only solution would be an extremely expensive lock held in
memory (or a so called lock table in the database) for the duration of, for example,
an application transaction. This is almost always a performance bottleneck; every
data access involves additional lock checks to a synchronized lock manager. You
may, if absolutely required in your particular application, implement a simple long
pessimistic lock yourself, using Hibernate to manage the lock table. Patterns for
this can be found on the Hibernate website; however, we definitely don’t recom-
mend this approach. You have to carefully examine the performance implications
of this exceptional case.

Let’s get back to application transactions. You now know the basics of managed
versioning and optimistic locking. In previous chapters (and earlier in this chap-
ter), we have talked about the Hibernate Session as not being the same as a trans-
action. In fact, a Session has a flexible scope, and you can use it in different ways
with database and application transactions. This means that the granularity of a
Session is flexible; it can be any unit of work you want it to be.

5.2.2 Granularity of a Session

To understand how you can use the Hibernate Session, let’s consider its relation-
ship with transactions. Previously, we have discussed two related concepts:

■ The scope of object identity (see section 4.1.4)

■ The granularity of database and application transactions

The Hibernate Session instance defines the scope of object identity. The Hiber-
nate Transaction instance matches the scope of a database transaction.

What is the relationship between a Session and
application transaction? Let’s start this discussion
with the most common usage of the Session.

Usually, we open a new Session for each client
request (for example, a web browser request) and
begin a new Transaction. After executing the busi-
ness logic, we commit the database transaction and
close the Session, before sending the response to
the client (see figure 5.2).

S1

T1

Request Response

Figure 5.2 Using one to one
Session and Transaction per
request/response cycle
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Working with application transactions 173

The session (S1) and the database transaction (T1) therefore have the same
granularity. If you’re not working with the concept of application transactions, this
simple approach is all you need in your application. We also like to call this
approach session-per-request.

If you need a long-running application transaction, you might, thanks to
detached objects (and Hibernate’s support for optimistic locking as discussed in
the previous section), implement it using the same approach (see figure 5.3).

Suppose your application transaction spans two client request/response
cycles—for example, two HTTP requests in a web application. You could load the
interesting objects in a first Session and later reattach them to a new Session after
they’ve been modified by the user. Hibernate will automatically perform a version
check. The time between (S1, T1) and (S2, T2) can be “long,” as long as your user
needs to make his changes. This approach is also known as session-per-request-with-
detached-objects.

Alternatively, you might prefer to use a single Session that spans multiple
requests to implement your application transaction. In this case, you don’t need to
worry about reattaching detached objects, since the objects remain persistent
within the context of the one long-running Session (see figure 5.4). Of course,
Hibernate is still responsible for performing optimistic locking.

A Session is serializable and may be safely stored in the servlet HttpSession, for
example. The underlying JDBC connection has to be closed, of course, and a new
connection must be obtained on a subsequent request. You use the disconnect()
and reconnect() methods of the Session interface to release the connection and
later obtain a new connection. This approach is known as session-per-application-
transaction or long Session.

Usually, your first choice should be to keep the Hibernate Session open no
longer than a single database transaction (session-per-request). Once the initial
database transaction is complete, the longer the session remains open, the greater

S1

T1

Request

S2

T2

Response

Application Transaction

Response Request

Detached Instances

Figure 5.3
Implementing applica-
tion transactions with
multiple Sessions, one
for each request/
response cycle
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

174 CHAPTER 5

Transactions, concurrency, and caching

the chance that it holds stale data in its cache of persistent objects (the session is
the mandatory first-level cache). Certainly, you should never reuse a single session
for longer than it takes to complete a single application transaction.

The question of application transactions and the scope of the Session is a mat-
ter of application design. We discuss implementation strategies with examples in
chapter 8, section 8.2, “Implementing application transactions.”

Finally, there is an important issue you might be concerned about. If you work
with a legacy database schema, you probably can’t add version or timestamp col-
umns for Hibernate’s optimistic locking.

5.2.3 Other ways to implement optimistic locking

If you don’t have version or timestamp columns, Hibernate can still perform opti-
mistic locking, but only for objects that are retrieved and modified in the same
Session. If you need optimistic locking for detached objects, you must use a version
number or timestamp.

This alternative implementation of optimistic locking checks the current data-
base state against the unmodified values of persistent properties at the time the
object was retrieved (or the last time the session was flushed). You can enable this
functionality by setting the optimistic-lock attribute on the class mapping:

<class name="Comment" table="COMMENT" optimistic-lock="all">
 <id/>
 ...
</class>

Now, Hibernate will include all properties in the WHERE clause:
update COMMENTS set COMMENT_TEXT='New text'
where COMMENT_ID=123
and COMMENT_TEXT='Old Text'
and RATING=5

S1

T1 T2

Request Response Request Response

Application Transaction

Disconnected from JDBC Connection

Figure 5.4
Implementing applica-
tion transactions with
a long Session using
disconnection
and ITEM_ID=3
and FROM_USER_ID=45

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 175

Alternatively, Hibernate will include only the modified properties (only
COMMENT_TEXT, in this example) if you set optimistic-lock="dirty". (Note that this
setting also requires you to set the class mapping to dynamic-update="true".)

We don’t recommend this approach; it’s slower, more complex, and less reliable
than version numbers and doesn’t work if your application transaction spans mul-
tiple sessions (which is the case if you’re using detached objects).

We’ll now again switch perspective and consider a new Hibernate aspect. We
already mentioned the close relationship between transactions and caching in the
introduction of this chapter. The fundamentals of transactions and locking, and
also the session granularity concepts, are of central importance when we consider
caching data in the application tier.

5.3 Caching theory and practice

A major justification for our claim that applications using an object/relational per-
sistence layer are expected to outperform applications built using direct JDBC is
the potential for caching. Although we’ll argue passionately that most applications
should be designed so that it’s possible to achieve acceptable performance without
the use of a cache, there is no doubt that for some kinds of applications—especially
read-mostly applications or applications that keep significant metadata in the data-
base—caching can have an enormous impact on performance.

We start our exploration of caching with some background information. This
includes an explanation of the different caching and identity scopes and the
impact of caching on transaction isolation. This information and these rules can
be applied to caching in general; they aren’t only valid for Hibernate applications.
This discussion gives you the background to understand why the Hibernate
caching system is like it is. We’ll then introduce the Hibernate caching system and
show you how to enable, tune, and manage the first- and second-level Hibernate
cache. We recommend that you carefully study the fundamentals laid out in this
section before you start using the cache. Without the basics, you might quickly run
into hard-to-debug concurrency problems and risk the integrity of your data.

A cache keeps a representation of current database state close to the applica-
tion, either in memory or on disk of the application server machine. The cache is
a local copy of the data. The cache sits between your application and the database.
The cache may be used to avoid a database hit whenever

■ The application performs a lookup by identifier (primary key)
■ The persistence layer resolves an association lazily

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

176 CHAPTER 5

Transactions, concurrency, and caching

It’s also possible to cache the results of queries. As you’ll see in chapter 7, the per-
formance gain of caching query results is minimal in most cases, so this function-
ality is used much less often.

Before we look at how Hibernate’s cache works, let’s walk through the different
caching options and see how they’re related to identity and concurrency.

5.3.1 Caching strategies and scopes

Caching is such a fundamental concept in object/relational persistence that you
can’t understand the performance, scalability, or transactional semantics of an
ORM implementation without first knowing what kind of caching strategy (or strat-
egies) it uses. There are three main types of cache:

■ Transaction scope—Attached to the current unit of work, which may be an
actual database transaction or an application transaction. It’s valid and used
as long as the unit of work runs. Every unit of work has its own cache.

■ Process scope—Shared among many (possibly concurrent) units of work or
transactions. This means that data in the process scope cache is accessed by
concurrently running transactions, obviously with implications on transac-
tion isolation. A process scope cache might store the persistent instances
themselves in the cache, or it might store just their persistent state in a disas-
sembled format.

■ Cluster scope—Shared among multiple processes on the same machine or
among multiple machines in a cluster. It requires some kind of remote process
communication to maintain consistency. Caching information has to be repli-
cated to all nodes in the cluster. For many (not all) applications, cluster
scope caching is of dubious value, since reading and updating the cache
might be only marginally faster than going straight to the database.

Persistence layers might provide multiple levels of caching. For example, a cache
miss (a cache lookup for an item that isn’t contained in the cache) at the transac-
tion scope might be followed by a lookup at the process scope. A database request
would be the last resort.

The type of cache used by a persistence layer affects the scope of object identity
(the relationship between Java object identity and database identity).

Caching and object identity
Consider a transaction scope cache. It seems natural that this cache is also used as

the identity scope of persistent objects. This means the transaction scope cache

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 177

implements identity handling: two lookups for objects using the same database
identifier return the same actual Java instance in a particular unit of work. A trans-
action scope cache is therefore ideal if a persistence mechanism also provides
transaction-scoped object identity.

Persistence mechanisms with a process scope cache might choose to imple-
ment process-scoped identity. In this case, object identity is equivalent to database
identity for the whole process. Two lookups using the same database identifier in
two concurrently running units of work result in the same Java instance. Alterna-
tively, objects retrieved from the process scope cache might be returned by value.
The cache contains tuples of data, not persistent instances. In this case, each unit
of work retrieves its own copy of the state (a tuple) and constructs its own persis-
tent instance. The scope of the cache and the scope of object identity are no
longer the same.

A cluster scope cache always requires remote communication, and in the case of
POJO-oriented persistence solutions like Hibernate, objects are always passed
remotely by value. A cluster scope cache can’t guarantee identity across a cluster.
You have to choose between transaction- or process-scoped object identity.

For typical web or enterprise application architectures, it’s most convenient that
the scope of object identity be limited to a single unit of work. In other words, it’s
neither necessary nor desirable to have identical objects in two concurrent
threads. There are other kinds of applications (including some desktop or fat-cli-
ent architectures) where it might be appropriate to use process-scoped object
identity. This is particularly true where memory is extremely limited—the memory
consumption of a transaction scope cache is proportional to the number of con-
current units of work.

The real downside to process-scoped identity is the need to synchronize access
to persistent instances in the cache, resulting in a high likelihood of deadlocks.

Caching and concurrency
Any ORM implementation that allows multiple units of work to share the same per-
sistent instances must provide some form of object-level locking to ensure synchro-
nization of concurrent access. Usually this is implemented using read and write
locks (held in memory) together with deadlock detection. Implementations like
Hibernate, which maintain a distinct set of instances for each unit of work (trans-
action-scoped identity), avoid these issues to a great extent.

It’s our opinion that locks held in memory are to be avoided, at least for web and
enterprise applications where multiuser scalability is an overriding concern. In
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

178 CHAPTER 5

Transactions, concurrency, and caching

these applications, it’s usually not required to compare object identity across con-
current units of work; each user should be completely isolated from other users.

There is quite a strong case for this view when the underlying relational database
implements a multiversion concurrency model (Oracle or PostgreSQL, for exam-
ple). It’s somewhat undesirable for the object/relational persistence cache to rede-
fine the transactional semantics or concurrency model of the underlying database.

Let’s consider the options again. A transaction scope cache is preferred if you
also use transaction-scoped object identity and is the best strategy for highly con-
current multiuser systems. This first-level cache would be mandatory, because it
also guarantees identical objects. However, this isn’t the only cache you can use.
For some data, a second-level cache scoped to the process (or cluster) that returns
data by value can be useful. This scenario therefore has two cache layers; you’ll
later see that Hibernate uses this approach.

Let’s discuss which data benefits from second-level caching—or, in other words,
when to turn on the process (or cluster) scope second-level cache in addition to
the mandatory first-level transaction scope cache.

Caching and transaction isolation
A process or cluster scope cache makes data retrieved from the database in one
unit of work visible to another unit of work. This may have some very nasty side-
effects upon transaction isolation.

First, if an application has non-exclusive access to the database, process scope
caching shouldn’t be used, except for data which changes rarely and may be safely
refreshed by a cache expiry. This type of data occurs frequently in content manage-
ment-type applications but rarely in financial applications.

You need to look out for two main scenarios involving non-exclusive access:

■ Clustered applications

■ Shared legacy data

Any application that is designed to scale must support clustered operation. A pro-
cess scope cache doesn’t maintain consistency between the different caches on dif-
ferent machines in the cluster. In this case, you should use a cluster scope
(distributed) cache instead of the process scope cache.

Many Java applications share access to their database with other (legacy) appli-
cations. In this case, you shouldn’t use any kind of cache beyond a transaction
scope cache. There is no way for a cache system to know when the legacy applica-
tion updated the shared data. Actually, it’s possible to implement application-level

functionality to trigger an invalidation of the process (or cluster) scope cache

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 179

when changes are made to the database, but we don’t know of any standard or best
way to achieve this. Certainly, it will never be a built-in feature of Hibernate. If you
implement such a solution, you’ll most likely be on your own, because it’s
extremely specific to the environment and products used.

After considering non-exclusive data access, you should establish what isolation
level is required for the application data. Not every cache implementation respects
all transaction isolation levels, and it’s critical to find out what is required. Let’s
look at data that benefits most from a process (or cluster) scoped cache.

A full ORM solution will let you configure second-level caching separately for
each class. Good candidate classes for caching are classes that represent

■ Data that changes rarely

■ Non-critical data (for example, content-management data)

■ Data that is local to the application and not shared

Bad candidates for second-level caching are

■ Data that is updated often

■ Financial data

■ Data that is shared with a legacy application

However, these aren’t the only rules we usually apply. Many applications have a
number of classes with the following properties:

■ A small number of instances

■ Each instance referenced by many instances of another class or classes

■ Instances rarely (or never) updated

This kind of data is sometimes called reference data. Reference data is an excellent
candidate for caching with a process or cluster scope, and any application that uses
reference data heavily will benefit greatly if that data is cached. You allow the data
to be refreshed when the cache timeout period expires.

We’ve shaped a picture of a dual layer caching system in the previous sections,
with a transaction scope first-level and an optional second-level process or cluster
scope cache. This is close to the Hibernate caching system.

5.3.2 The Hibernate cache architecture

As we said earlier, Hibernate has a two-level cache architecture. The various ele-
ments of this system can be seen in figure 5.5.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

180 CHAPTER 5

Transactions, concurrency, and caching

The first-level cache is the Session itself. A session lifespan corresponds to either a
database transaction or an application transaction (as explained earlier in this
chapter). We consider the cache associated with the Session to be a transaction
scope cache. The first-level cache is mandatory and can’t be turned off; it also guar-
antees object identity inside a transaction.

The second-level cache in Hibernate is pluggable and might be scoped to the
process or cluster. This is a cache of state (returned by value), not of persistent
instances. A cache concurrency strategy defines the transaction isolation details for
a particular item of data, whereas the cache provider represents the physical, actual
cache implementation. Use of the second-level cache is optional and can be con-
figured on a per-class and per-association basis.

Hibernate also implements a cache for query result sets that integrates closely
with the second-level cache. This is an optional feature. We discuss the query cache
in chapter 7, since its usage is closely tied to the actual query being executed.

Let’s start with using the first-level cache, also called the session cache.

Using the first-level cache
The session cache ensures that when the application requests the same persistent
object twice in a particular session, it gets back the same (identical) Java instance.
This sometimes helps avoid unnecessary database traffic. More important, it
ensures the following:

Cache Concurrency
Strategy

Second-level Cache

Cache Provider

Cache Implementation
(Physical Cache Regions)

Query Cache

Session

First-level Cache

Figure 5.5
Hibernate’s two-level
cache architecture
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 181

■ The persistence layer isn’t vulnerable to stack overflows in the case of circu-
lar references in a graph of objects.

■ There can never be conflicting representations of the same database row at
the end of a database transaction. There is at most a single object represent-
ing any database row. All changes made to that object may be safely written
to the database (flushed).

■ Changes made in a particular unit of work are always immediately visible to
all other code executed inside that unit of work.

You don’t have to do anything special to enable the session cache. It’s always on
and, for the reasons shown, can’t be turned off.

Whenever you pass an object to save(), update(), or saveOrUpdate(), and when-
ever you retrieve an object using load(), find(), list(), iterate(), or filter(),
that object is added to the session cache. When flush() is subsequently called, the
state of that object will be synchronized with the database.

If you don’t want this synchronization to occur, or if you’re processing a huge
number of objects and need to manage memory efficiently, you can use the
evict() method of the Session to remove the object and its collections from the
first-level cache. There are several scenarios where this can be useful.

Managing the first-level cache
Consider this frequently asked question: “I get an OutOfMemoryException when I try
to load 100,000 objects and manipulate all of them. How can I do mass updates
with Hibernate?”

It’s our view that ORM isn’t suitable for mass update (or mass delete) operations.
If you have a use case like this, a different strategy is almost always better: call a
stored procedure in the database or use direct SQL UPDATE and DELETE statements.
Don’t transfer all the data to main memory for a simple operation if it can be per-
formed more efficiently by the database. If your application is mostly mass opera-
tion use cases, ORM isn’t the right tool for the job!

If you insist on using Hibernate even for mass operations, you can immediately
evict() each object after it has been processed (while iterating through a query
result), and thus prevent memory exhaustion.

To completely evict all objects from the session cache, call Session.clear(). We
aren’t trying to convince you that evicting objects from the first-level cache is a bad
thing in general, but that good use cases are rare. Sometimes, using projection and
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

182 CHAPTER 5

Transactions, concurrency, and caching

a report query, as discussed in chapter 7, section 7.4.5, “Improving performance
with report queries,” might be a better solution.

Note that eviction, like save or delete operations, can be automatically applied
to associated objects. Hibernate will evict associated instances from the Session
if the mapping attribute cascade is set to all or all-delete-orphan for a particu-
lar association.

When a first-level cache miss occurs, Hibernate tries again with the second-level
cache if it’s enabled for a particular class or association.

The Hibernate second-level cache
The Hibernate second-level cache has process or cluster scope; all sessions share
the same second-level cache. The second-level cache actually has the scope of a
SessionFactory.

Persistent instances are stored in the second-level cache in a disassembled form.
Think of disassembly as a process a bit like serialization (the algorithm is much,
much faster than Java serialization, however).

The internal implementation of this process/cluster scope cache isn’t of much
interest; more important is the correct usage of the cache policies—that is, caching
strategies and physical cache providers.

Different kinds of data require different cache policies: the ratio of reads to
writes varies, the size of the database tables varies, and some tables are shared with
other external applications. So the second-level cache is configurable at the
granularity of an individual class or collection role. This lets you, for example,
enable the second-level cache for reference data classes and disable it for classes
that represent financial records. The cache policy involves setting the following:

■ Whether the second-level cache is enabled

■ The Hibernate concurrency strategy

■ The cache expiration policies (such as timeout, LRU, memory-sensitive)

■ The physical format of the cache (memory, indexed files, cluster-replicated)

Not all classes benefit from caching, so it’s extremely important to be able to dis-
able the second-level cache. To repeat, the cache is usually useful only for read-
mostly classes. If you have data that is updated more often than it’s read, don’t
enable the second-level cache, even if all other conditions for caching are true!
Furthermore, the second-level cache can be dangerous in systems that share the
database with other writing applications. As we explained in earlier sections, you

must exercise careful judgment here.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 183

The Hibernate second-level cache is set up in two steps. First, you have to decide
which concurrency strategy to use. After that, you configure cache expiration and
physical cache attributes using the cache provider.

Built-in concurrency strategies
A concurrency strategy is a mediator; it’s responsible for storing items of data in
the cache and retrieving them from the cache. This is an important role, because
it also defines the transaction isolation semantics for that particular item. You’ll
have to decide, for each persistent class, which cache concurrency strategy to use,
if you want to enable the second-level cache.

There are four built-in concurrency strategies, representing decreasing levels of
strictness in terms of transaction isolation:

■ transactional—Available in a managed environment only. It guarantees full
transactional isolation up to repeatable read, if required. Use this strategy for
read-mostly data where it’s critical to prevent stale data in concurrent trans-
actions, in the rare case of an update.

■ read-write—Maintains read committed isolation, using a timestamping mecha-
nism. It’s available only in non-clustered environments. Again, use this strat-
egy for read-mostly data where it’s critical to prevent stale data in
concurrent transactions, in the rare case of an update.

■ nonstrict-read-write—Makes no guarantee of consistency between the cache
and the database. If there is a possibility of concurrent access to the same
entity, you should configure a sufficiently short expiry timeout. Otherwise,
you may read stale data in the cache. Use this strategy if data rarely changes
(many hours, days or even a week) and a small likelihood of stale data isn’t
of critical concern. Hibernate invalidates the cached element if a modified
object is flushed, but this is an asynchronous operation, without any cache
locking or guarantee that the retrieved data is the latest version.

■ read-only—A concurrency strategy suitable for data which never changes.
Use it for reference data only.

Note that with decreasing strictness comes increasing performance. You have to
carefully evaluate the performance of a clustered cache with full transaction isola-
tion before using it in production. In many cases, you might be better off disabling
the second-level cache for a particular class if stale data isn’t an option. First bench-
mark your application with the second-level cache disabled. Then enable it for

good candidate classes, one at a time, while continuously testing the performance
of your system and evaluating concurrency strategies.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

184 CHAPTER 5

Transactions, concurrency, and caching

It’s possible to define your own concurrency strategy by implementing
net.sf.hibernate.cache.CacheConcurrencyStrategy, but this is a relatively diffi-
cult task and only appropriate for extremely rare cases of optimization.

Your next step after considering the concurrency strategies you’ll use for your
cache candidate classes is to pick a cache provider. The provider is a plugin, the phys-
ical implementation of a cache system.

Choosing a cache provider
For now, Hibernate forces you to choose a single cache provider for the whole
application. Providers for the following products are built into Hibernate:

■ EHCache is intended for a simple process scope cache in a single JVM. It can
cache in memory or on disk, and it supports the optional Hibernate query
result cache.

■ OpenSymphony OSCache is a library that supports caching to memory and disk
in a single JVM, with a rich set of expiration policies and query cache support.

■ SwarmCache is a cluster cache based on JGroups. It uses clustered invalida-
tion but doesn’t support the Hibernate query cache.

■ JBossCache is a fully transactional replicated clustered cache also based on
the JGroups multicast library. The Hibernate query cache is supported,
assuming that clocks are synchronized in the cluster.

It’s easy to write an adaptor for other products by implementing net.sf.hiber-
nate.cache.CacheProvider.

Not every cache provider is compatible with every concurrency strategy. The
compatibility matrix in table 5.1 will help you choose an appropriate combination.

Table 5.1 Cache concurrency strategy support

Cache Provider read-only
nonstrict-
read-write

read-write transactional

EHCache X X X

OSCache X X X

SwarmCache X X

JBossCache X X
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 185

Setting up caching therefore involves two steps:

1 Look at the mapping files for your persistent classes and decide which cache
concurrency strategy you’d like to use for each class and each association.

2 Enable your preferred cache provider in the global Hibernate configura-
tion and customize the provider-specific settings.

For example, if you’re using OSCache, you should edit oscache.properties, or for
EHCache, ehcache.xml in your classpath.

Let’s add caching to our CaveatEmptor Category and Item classes.

5.3.3 Caching in practice

Remember that you don’t have to explicitly enable the first-level cache. So, let’s
declare caching policies and set up cache providers for the second-level cache in
our CaveatEmptor application.

The Category has a small number of instances and is updated rarely, and
instances are shared among many users, so it’s a great candidate for use of the sec-
ond-level cache. We start by adding the mapping element required to tell Hiber-
nate to cache Category instances:

<class
 name="Category"
 table="CATEGORY">
 <cache usage="read-write"/>

 <id
 </class>

The usage="read-write" attribute tells Hibernate to use a read-write concurrency
strategy for the Category cache. Hibernate will now try the second-level cache
whenever we navigate to a Category or when we load a Category by identifier.

We have chosen read-write instead of nonstrict-read-write, since Category is
a highly concurrent class, shared among many concurrent transactions, and it’s
clear that a read-committed isolation level is good enough. However, nonstrict-
read-write would probably be an acceptable alternative, since a small probability
of inconsistency between the cache and database is acceptable (the category hier-
archy has little financial significance).

This mapping was enough to tell Hibernate to cache all simple Category prop-
erty values but not the state of associated entities or collections. Collections require
their own <cache> element. For the items collection, we’ll use a read-write con-

currency strategy:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

186 CHAPTER 5

Transactions, concurrency, and caching

<class
 name="Category"
 table="CATEGORY">
 <cache usage="read-write"/>

 <id

 <set name="items" lazy="true">
 <cache usage="read-write"/>
 <key
 </set>

</class>

This cache will be used when we call category.getItems().iterate(), for example.
Now, a collection cache holds only the identifiers of the associated item

instances. So, if we require the instances themselves to be cached, we must enable
caching of the Item class. A read-write strategy is especially appropriate here. Our
users don’t want to make decisions (placing a Bid) based on possibly stale data.
Let’s go a step further and consider the collection of Bids. A particular Bid in the
bids collection is immutable, but we have to map the collection using read-write,
since new bids may be made at any time (and it’s critical that we be immediately
aware of new bids):

<class
 name="Item"
 table="ITEM">
 <cache usage="read-write"/>

 <id

 <set name="bids" lazy="true">
 <cache usage="read-write"/>
 <key
 </set>
 </class>

To the immutable Bid class, we apply a read-only strategy:

<class
 name="Bid"
 table="BID">
 <cache usage="read-only"/>

 <id

 </class>

Cached Bid data is valid indefinitely, because bids are never updated. No cache
invalidation is required. (Instances may be evicted by the cache provider—for

example, if the maximum number of objects in the cache is reached.)

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 187

User is an example of a class that could be cached with the nonstrict-read-write
strategy, but we aren’t certain that it makes sense to cache users at all.

Let’s set the cache provider, expiration policies, and physical properties of our
cache. We use cache regions to configure class and collection caching individually.

Understanding cache regions
Hibernate keeps different classes/collections in different cache regions. A region
is a named cache: a handle by which you can reference classes and collections in
the cache provider configuration and set the expiration policies applicable to
that region.

The name of the region is the class name, in the case of a class cache; or the class
name together with the property name, in the case of a collection cache. Category
instances are cached in a region named org.hibernate.auction.Category, and the
items collection is cached in a region named org.hibernate.auction.Cate-
gory.items.

You can use the Hibernate configuration property hibernate.cache.region_
prefix to specify a root region name for a particular SessionFactory. For example,
if the prefix was set to node1, Category would be cached in a region named
node1.org.hibernate.auction.Category. This setting is useful if your application
includes multiple SessionFactory instances.

Now that you know about cache regions, let’s configure the expiry policies for
the Category cache. First we’ll choose a cache provider. Assume that we’re running
our auction application in a single JVM, so we don’t need a cluster-safe implemen-
tation (which would limit our options).

Setting up a local cache provider
We need to set the property that selects a cache provider:

hibernate.cache.provider_class=net.sf.ehcache.hibernate.Provider

We’ve chosen EHCache as our second-level cache.
Now, we need to specify the expiry policies for the cache regions. EHCache

has its own configuration file, ehcache.xml, in the classpath of the application.
The Hibernate distribution comes bundled with example configuration files for
all built-in cache providers, so we recommend the usage comments in those files
for detailed configuration and assume the defaults for all options we don’t men-
tion explicitly.

A cache configuration in ehcache.xml for the Category class might look like this:
<cache name="org.hibernate.auction.model.Category"
 maxElementsInMemory="500"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

188 CHAPTER 5

Transactions, concurrency, and caching

 eternal="true"
 timeToIdleSeconds="0"
 timeToLiveSeconds="0"
 overflowToDisk="false"
 />

There are a small number of Category instances, and they’re all shared among
many concurrent transactions. We therefore disable eviction by timeout by choos-
ing a cache size limit greater than the number of categories in our system and set-
ting eternal="true". There is no need to expire cached data by timeout because
the Category cache concurrency strategy is read-write and because there are no
other applications changing category data. We also disable disk-based caching,
since we know that there are few instances of Category and so memory consump-
tion won’t be a problem.

Bids, on the other hand, are small and immutable, but there are many of them;
so we must configure EHCache to carefully manage the cache memory consump-
tion. We use both an expiry timeout and a maximum cache size limit:

<cache name="org.hibernate.auction.model.Bid"
 maxElementsInMemory="5000"
 eternal="false"
 timeToIdleSeconds="1800"
 timeToLiveSeconds="100000"
 overflowToDisk="false"
 />

The timeToIdleSeconds attribute defines the expiry time in seconds since an ele-
ment was last accessed in the cache. We must set a sensible value here, since we
don’t want unused bids to consume memory. The timeToLiveSeconds attribute
defines the maximum expiry time in seconds since the element was added to the
cache. Since bids are immutable, we don’t need them to be removed from the
cache if they’re being accessed regularly. Hence, timeToLiveSeconds is set to a
high number.

The result is that cached bids are removed from the cache if they have not been
used in the past 30 minutes or if they’re the least recently used item when the total
size of the cache has reached its maximum limit of 5000 elements.

We’ve disabled the disk-based cache in this example, since we anticipate that
the application server will be deployed to the same machine as the database. If
the expected physical architecture were different, we might enable the disk-
based cache.

Optimal cache eviction policies are, as you can see, specific to the particular data

and particular application. You must consider many external factors, including

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 189

available memory on the application server machine, expected load on the data-
base machine, network latency, existence of legacy applications, and so on. Some
of these factors can’t possibly be known at development time, so you’ll often need
to iteratively test the performance impact of different settings in the production
environment or a simulation of it.

This is especially true in a more complex scenario, with a replicated cache
deployed to a cluster of server machines.

Setting up a replicated cache
EHCache is an excellent cache provider if your application is deployed on a single
virtual machine. However, enterprise applications supporting thousands of con-
current users might require more computing power, and scaling your application
might be critical to the success of your project. Hibernate applications are natu-
rally scalable—that is, Hibernate behaves the same whether it’s deployed to a single
machine or to many machines. The only feature of Hibernate that must be config-
ured specifically for clustered operation is the second-level cache. With a few
changes to our cache configuration, we’re able to use a clustered caching system.

It isn’t necessarily wrong to use a purely local (non–cluster-aware) cache pro-
vider in a cluster. Some data—especially immutable data, or data that can be
refreshed by cache timeout—doesn’t require clustered invalidation and may safely
be cached locally, even in a clustered environment. We might be able to have each
node in the cluster use a local instance of EHCache, and carefully choose suffi-
ciently short timeToLiveSeconds timeouts.

However, if you require strict cache consistency in a clustered environment, you
must use a more sophisticated cache provider. We recommend JBossCache, a fully
transactional, cluster-safe caching system based on the JGroups multicast library.
JBossCache is extremely performant, and cluster communication may be tuned in
almost any way imaginable.

We’ll now step through a setup of JBossCache for CaveatEmptor for a small clus-
ter of two nodes: node A and node B. However, we only scratch the surface of the
topic; cluster configurations are by nature complex, and many settings depend on
the particular scenario.

First, we have to check that all our mapping files use read-only or transactional
as a cache concurrency strategy. These are the only strategies supported by the
JBossCache provider. A nice trick can help us avoid this search-and-replace prob-
lem in the future: Instead of placing <cache> elements in our mapping files, we can

centralize cache configuration in hibernate.cfg.xml:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

190 CHAPTER 5

Transactions, concurrency, and caching

<hibernate-configuration>
 <session-factory>
 <property .../>
 <mapping .../>

 <class-cache
 class="org.hibernate.auction.model.Item"
 usage="transactional"/>

 <collection-cache
 collection="org.hibernate.auction.model.Item.bids"
 usage="transactional"/>

 </session-factory>

</hibernate-configuration>

We enabled transactional caching for Item and the bids collection in this example.
However, there is one important caveat: at the time of this writing, Hibernate will
run into a conflict if we also have <cache> elements in the mapping file for Item.
We therefore can’t use the global configuration to override the mapping file set-
tings. We recommend that you use the centralized cache configuration from the
start, especially if you aren’t sure how your application might be deployed. It’s also
easier to tune cache settings with a centralized configuration.

The next step in our cluster setup is the configuration of the JBossCache pro-
vider. First, we enable it in the Hibernate configuration—for example, if we aren’t
using properties, in hibernate.cfg.xml:

<property name="cache.provider_class">
 net.sf.hibernate.cache.TreeCacheProvider
</property>

JBossCache has its own configuration file, treecache.xml, which is expected in the
classpath of your application. In most scenarios, you need a different configuration
for each node in your cluster, and you have to make sure the correct file is copied
to the classpath on deployment. Let’s look at a typical configuration file. In our
two-node cluster (named MyCluster), this file is used on the node A:

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <classpath codebase="./lib"
 archives="jboss-cache.jar, jgroups.jar"/>

 <mbean code="org.jboss.cache.TreeCache"
 name="jboss.cache:service=TreeCache">

 <depends>jboss:service=Naming</depends>

 <depends>jboss:service=TransactionManager</depends>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 191

 <attribute name="ClusterName">MyCluster</attribute>

 <attribute name="CacheMode">REPL_SYNC</attribute>
 <attribute name="SyncReplTimeout">10000</attribute>
 <attribute name="LockAcquisitionTimeout">15000</attribute>
 <attribute name="FetchStateOnStartup">true</attribute>

 <attribute name="EvictionPolicyClass">
 org.jboss.cache.eviction.LRUPolicy
 </attribute>

 <attribute name="EvictionPolicyConfig">
 <config>
 <attribute name="wakeUpIntervalSeconds">5</attribute>
 <!-- Cache wide default -->
 <region name="/_default_">
 <attribute name="maxNodes">5000</attribute>
 <attribute name="timeToIdleSeconds">1000</attribute>
 </region>
 <region name="/org/hibernate/auction/model/Category">
 <attribute name="maxNodes">500</attribute>
 <attribute name="timeToIdleSeconds">5000</attribute>
 </region>
 <region name="/org/hibernate/auction/model/Bid">
 <attribute name="maxNodes">5000</attribute>
 <attribute name="timeToIdleSeconds">1800</attribute>
 </region>
 </config>
 </attribute>

 <attribute name="ClusterConfig">
 <config>
 <UDP bind_addr="192.168.0.1"
 ip_mcast="true"
 loopback="false"/>

 <PING timeout="2000"
 num_initial_members="3"
 up_thread="false"
 down_thread="false"/>

 <FD_SOCK/>

 <pbcast.NAKACK gc_lag="50"
 retransmit_timeout="600,1200,2400,4800"
 max_xmit_size="8192"
 up_thread="false" down_thread="false"/>

 <UNICAST timeout="600,1200,2400"
 window_size="100"
 min_threshold="10"
 down_thread="false"/>
 <pbcast.STABLE desired_avg_gossip="20000"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

192 CHAPTER 5

Transactions, concurrency, and caching

 up_thread="false"
 down_thread="false"/>

 <FRAG frag_size="8192"
 down_thread="false"
 up_thread="false"/>

 <pbcast.GMS join_timeout="5000"
 join_retry_timeout="2000"
 shun="true" print_local_addr="true"/>

 <pbcast.STATE_TRANSFER up_thread="true"
 down_thread="true"/>
 </config>
 </attribute>

 </mbean>
</server>

Granted, this configuration file might look scary at first, but it’s easy to understand.
You have to know that it isn’t only a configuration file for JBossCache, it’s many
things in one: a JMX service configuration for JBoss deployment, a configuration
file for TreeCache, and a fine-grained configuration of JGroups, the communica-
tion library.

Let’s ignore the first few lines relating to JBoss deployment (they will be ignored
when running JBossCache outside a JBoss application server) and look at the Tree-
Cache configuration attributes. These settings define a replicated cache that uses
synchronized communication. This means that a node sending a replication message
waits until all nodes in the group acknowledge the message. This is a good choice
for use in a true replicated cache. Asynchronous non-blocking communication
might be more appropriate if node B was a hot standby (a node that immediately
takes over if node A fails) instead of a live partner. A hot standby is used when the
purpose of the cluster is failover rather than throughput. The other configuration
attributes are self explanatory, dealing with issues such as timeouts and population
of the cache when a new node joins the cluster.

JBossCache provides pluggable eviction policies. In this case, we’ve selected the
built-in policy, org.jboss.cache.eviction.LRUPolicy. We then configure eviction
for each cache region, just as we did with EHCache.

Finally, let’s look at the JGroups cluster communication configuration. The
order of communication protocols is extremely important, so don’t change or
add lines randomly. Most interesting is the first protocol, <UDP>. We declare a
binding of the communication socket to the IP interface 192.168.0.1 (the IP
address of node A in our network) and enable multicast communication. The
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Caching theory and practice 193

loopback attribute has to be set to true if node A would be a Microsoft Windows
machine (it isn’t).

The other JGroups attributes are more complex and can be found in the
JGroups documentation. They deal with the discovery algorithms used to detect
new nodes in a group, failure detection, and in general, the management of the
group communication.

So, after changing the cache concurrency strategy of your persistent classes to
transactional (or read-only) and creating a treecache.xml file for node A, you can
start up your application and check the log output. We recommend enabling DEBUG
logging for the org.jboss.cache class; you’ll see how JBossCache reads the config-
uration and node A is reported as the first node in the cluster. To deploy node B,
change the IP address in the configuration file and repeat the deployment proce-
dure with this new file. You should see join messages on both nodes as soon as the
cache is started. Your Hibernate application will now use fully transactional
caching in a cluster: each element put into the cache will be replicated, and
updated elements will be invalidated.

There is one final optional setting to consider. For cluster cache providers, it
might be better to set the Hibernate configuration option hibernate.

cache.use_minimal_puts to true. When this setting is enabled, Hibernate will only
add an item to the cache after checking to ensure that the item isn’t already
cached. This strategy performs better if cache writes (puts) are much more expen-
sive than cache reads (gets). This is the case for a replicated cache in a cluster, but
not for a local cache (the default is false, optimized for a local cache). Whether
you’re using a cluster or a local cache, you sometimes need to control it program-
matically for testing or tuning purposes.

Controlling the second-level cache
Hibernate has some useful methods that will help you test and tune your cache.
You may wonder how to disable the second-level cache completely. Hibernate will
only load the cache provider and start using the second-level cache if you have any
cache declarations in your mapping files or XML configuration file. If you com-
ment them out, the cache is disabled. This is another good reason to prefer cen-
tralized cache configuration in hibernate.cfg.xml.

Just as the Session provides methods for controlling the first-level cache pro-
grammatically, so does the SessionFactory for the second-level cache.

You can call evict() to remove an element from the cache, by specifying the

class and the object identifer value:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

194 CHAPTER 5

Transactions, concurrency, and caching

SessionFactory.evict(Category.class, new Long(123));

You can also evict all elements of a certain class or only evict a particular collec-
tion role:

SessionFactory.evict("org.hibernate.auction.model.Category");

You’ll rarely need these control mechanisms.

5.4 Summary

This chapter was dedicated to concurrency control and data caching.
You learned that for a single unit of work, either all operations should be com-

pletely successful or the whole unit of work should fail (and changes made to per-
sistent state should be rolled back). This led us to the notion of a transaction and
the ACID attributes. A transaction is atomic, leaves data in a consistent state, and is
isolated from concurrently running transactions, and you have the guarantee that
data changed by a transaction is durable.

You use two transaction concepts in Hibernate applications: short database
transactions and long-running application transactions. Usually, you use read com-
mitted isolation for database transactions, together with optimistic concurrency
control (version and timestamp checking) for long application transactions.
Hibernate greatly simplifies the implementation of application transactions
because it manages version numbers and timestamps for you.

Finally, we discussed the fundamentals of caching, and you learned how to use
caching effectively in Hibernate applications.

Hibernate provides a dual-layer caching system with a first-level object cache
(the Session) and a pluggable second-level data cache. The first-level cache is
always active—it’s used to resolve circular references in your object graph and to
optimize performance in a single unit of work. The (process or cluster scope) sec-
ond-level cache on the other hand is optional and works best for read-mostly can-
didate classes. You can configure a non-volatile second-level cache for reference
(read-only) data or even a second-level cache with full transaction isolation for crit-
ical data. However, you have to carefully examine whether the performance gain is
worth the effort. The second-level cache can be customized fine-grained, for each
persistent class and even for each collection and class association. Used correctly
and thoroughly tested, caching in Hibernate gives you a level of performance that
is almost unachievable in a hand-coded data access layer.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced mapping concepts
This chapter covers

■ The Hibernate type system
■ Custom mapping types
■ Collection mappings
■ One-to-one and many-to-many associations
195

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

196 CHAPTER 6

Advanced mapping concepts

In chapter 3, we introduced the most important ORM features provided by Hiber-
nate. You’ve met basic class and property mappings, inheritance mappings, com-
ponent mappings, and one-to-many association mappings. We now continue
exploring these topics by turning to the more exotic collection and association
mappings. At various places, we’ll warn you against using a feature without careful
consideration. For example, it’s usually possible to implement any domain model
using only component mappings and one-to-many (occasionally one-to-one) asso-
ciations. The exotic mapping features should be used with care, perhaps even
avoided most of the time.

Before we start to talk about the exotic features, you need a more rigorous
understanding of Hibernate’s type system—particularly of the distinction between
entity and value types.

6.1 Understanding the Hibernate type system

In chapter 3, section 3.5.1, “Entity and value types,” we first distinguished between
entity and value types, a central concept of ORM in Java. We must elaborate that
distinction in order for you to fully understand the Hibernate type system of enti-
ties, value types, and mapping types.

Entities are the coarse-grained classes in a system. You usually define the features
of a system in terms of the entities involved: “the user places a bid for an item” is a
typical feature definition that mentions three entities. Classes of value type often
don’t appear in the business requirements—they’re usually the fine-grained classes
representing strings, numbers, and monetary amounts. Occasionally, value types do
appear in feature definitions: “the user changes billing address” is one example,
assuming that Address is a value type, but this is atypical.

More formally, an entity is any class whose instances have their own persistent
identity. A value type is a class that doesn’t define some kind of persistent identity.
In practice, this means entity types are classes with identifier properties, and value-
type classes depend on an entity.

At runtime, you have a graph of entity instances interleaved with value type
instances. The entity instances may be in any of the three persistent lifecycle states:
transient, detached, or persistent. We don’t consider these lifecycle states to apply
to the value type instances.

Therefore, entities have their own lifecycle. The save() and delete() methods
of the Hibernate Session interface apply to instances of entity classes, never to
value type instances. The persistence lifecycle of a value type instance is completely

tied to the lifecycle of the owning entity instance. For example, the username

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 197

becomes persistent when the user is saved; it never becomes persistent indepen-
dently of the user.

In Hibernate, a value type may define associations; it’s possible to navigate from
a value type instance to some other entity. However, it’s never possible to navigate
from the other entity back to the value type instance. Associations always point to
entities. This means that a value type instance is owned by exactly one entity when
it’s retrieved from the database—it’s never shared.

At the level of the database, any table is considered an entity. However, Hiber-
nate provides certain constructs to hide the existence of a database-level entity
from the Java code. For example, a many-to-many association mapping hides the
intermediate association table from the application. A collection of strings (more
accurately, a collection of value-typed instances) behaves like a value type from the
point of view of the application; however, it’s mapped to its own table. Although
these features seem nice at first (they simplify the Java code), we have over time
become suspicious of them. Inevitably, these hidden entities end up needing to be
exposed to the application as business requirements evolve. The many-to-many
association table, for example, often has additional columns that are added when
the application is maturing. We’re almost prepared to recommend that every data-
base-level entity be exposed to the application as an entity class. For example, we’d
be inclined to model the many-to-many association as two one-to-many associations
to an intervening entity class. We’ll leave the final decision to you, however, and
return to the topic of many-to-many entity associations later in this chapter.

So, entity classes are always mapped to the database using <class>, <subclass>,
and <joined-subclass> mapping elements. How are value types mapped?

Consider this mapping of the CaveatEmptor User and email address:

<property
 name="email"
 column="EMAIL"
 type="string"/>

Let’s focus on the type="string" attribute. In ORM, you have to deal with Java
types and SQL data types. The two different type systems must be bridged. This is
the job of the Hibernate mapping types, and string is the name of a built-in Hiber-
nate mapping type.

The string mapping type isn’t the only one built into Hibernate; Hibernate
comes with various mapping types that define default persistence strategies for
primitive Java types and certain JDK classes.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

198 CHAPTER 6

Advanced mapping concepts

6.1.1 Built-in mapping types

Hibernate’s built-in mapping types usually share the name of the Java type they
map; however, there may be more than one Hibernate mapping type for a partic-
ular Java type. Furthermore, the built-in types may not be used to perform arbitrary
conversions, such as mapping a VARCHAR field value to a Java Integer property
value. You may define your own custom value types to do this kind of thing, as dis-
cussed later in this chapter.

We’ll now discuss the basic, date and time, large object, and various other built-
in mapping types and show you what Java and SQL data types they handle.

Java primitive mapping types
The basic mapping types in table 6.1 map Java primitive types (or their wrapper
types) to appropriate built-in SQL standard types.

You’ve probably noticed that your database doesn’t support some of the SQL types
listed in table 6.1. The listed names are ANSI-standard data types. Most database
vendors ignore this part of the SQL standard (because their type systems sometimes
predate the standard). However, the JDBC driver provides a partial abstraction of

Table 6.1 Primitive types

Mapping type Java type
Standard SQL
built-in type

integer int or java.lang.Integer INTEGER

long long or java.lang.Long BIGINT

short short or java.lang.Short SMALLINT

float float or java.lang.Float FLOAT

double double or java.lang.Double DOUBLE

big_decimal java.math.BigDecimal NUMERIC

character java.lang.String CHAR(1)

string java.lang.String VARCHAR

byte byte or java.lang.Byte TINYINT

boolean boolean or java.lang.Boolean BIT

yes_no boolean or java.lang.Boolean CHAR(1) ('Y' or 'N')

true_false boolean or java.lang.Boolean CHAR(1) ('T' or 'F')
vendor-specific SQL data types, allowing Hibernate to work with ANSI-standard

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 199

types when executing data manipulation language (DML). For database-specific
DDL generation, Hibernate translates from the ANSI-standard type to an appropri-
ate vendor-specific type, using the built-in support for specific SQL dialects. (You
usually don’t have to worry about SQL data types if you’re using Hibernate for data
access and data schema definition.)

Date and time mapping types
Table 6.2 lists Hibernate types associated with dates, times, and timestamps. In your
domain model, you may choose to represent date and time data using either
java.util.Date, java.util.Calendar, or the subclasses of java.util.Date defined
in the java.sql package. This is a matter of taste, and we leave the decision to
you—make sure you’re consistent, however!

Large object mapping types
Table 6.3 lists Hibernate types for handling binary data and large objects. Note that
none of these types may be used as the type of an identifier property.

Table 6.2 Date and time types

Mapping type Java type
Standard SQL
built-in type

date java.util.Date or java.sql.Date DATE

time java.util.Date or java.sql.Time TIME

timestamp java.util.Date or java.sql.Timestamp TIMESTAMP

calendar java.util.Calendar TIMESTAMP

calendar_date java.util.Calendar DATE

Table 6.3 Binary and large object types

Mapping type Java type
Standard SQL
built-in type

binary byte[] VARBINARY (or BLOB)

text java.lang.String CLOB

serializable any Java class that implements
java.io.Serializable

VARBINARY (or BLOB)

clob java.sql.Clob CLOB

blob java.sql.Blob BLOB
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

200 CHAPTER 6

Advanced mapping concepts

java.sql.Blob and java.sql.Clob are the most efficient way to handle large
objects in Java. Unfortunately, an instance of Blob or Clob is only useable until the
JDBC transaction completes. So if your persistent class defines a property of
java.sql.Clob or java.sql.Blob (not a good idea anyway), you’ll be restricted in
how instances of the class may be used. In particular, you won’t be able to use
instances of that class as detached objects. Furthermore, many JDBC drivers don’t
feature working support for java.sql.Blob and java.sql.Clob. Therefore, it
makes more sense to map large objects using the binary or text mapping type,
assuming retrieval of the entire large object into memory isn’t a performance killer.

Note you can find up-to-date design patterns and tips for large object usage on
the Hibernate website, with tricks for particular platforms.

Various JDK mapping types
Table 6.4 lists Hibernate types for various other Java types of the JDK that may be
represented as VARCHARs in the database.

Certainly, <property> isn’t the only Hibernate mapping element that has a type
attribute.

6.1.2 Using mapping types

All of the basic mapping types may appear almost anywhere in the Hibernate
mapping document, on normal property, identifier property, and other map-
ping elements.

The <id>, <property>, <version>, <discriminator>, <index>, and <element> ele-
ments all define an attribute named type. (There are certain limitations on which
mapping basic types may function as an identifier or discriminator type, however.)

You can see how useful the built-in mapping types are in this mapping for the
BillingDetails class:

Table 6.4 Other JDK-related types

Mapping type Java type
Standard SQL
built-in type

class java.lang.Class VARCHAR

locale java.util.Locale VARCHAR

timezone java.util.TimeZone VARCHAR

currency java.util.Currency VARCHAR
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 201

<class name="BillingDetails"
 table="BILLING_DETAILS"
 discriminator-value="null">

 <id name="id" type="long" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>

 <discriminator type="character" column="TYPE"/>

 <property name="number" type="string"/>
 ...
</class>

The BillingDetails class is mapped as an entity. Its discriminator, identifier, and
number properties are value typed, and we use the built-in Hibernate mapping types
to specify the conversion strategy.

It’s often not necessary to explicitly specify a built-in mapping type in the XML
mapping document. For instance, if you have a property of Java type
java.lang.String, Hibernate will discover this using reflection and select string
by default. We can easily simplify the previous mapping example:

<class name="BillingDetails"
 table="BILLING_DETAILS"
 discriminator-value="null">

 <id name="id" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>

 <discriminator type="character" column="TYPE"/>

 <property name="number"/>

</class>

The most important case where this approach doesn’t work well is a
java.util.Date property. By default, Hibernate interprets a Date as a timestamp
mapping. You’d need to explicitly specify type="time" or type="date" if you didn’t
wish to persist both date and time information.

For each of the built-in mapping types, a constant is defined by the class
net.sf.hibernate.Hibernate. For example, Hibernate.STRING represents the
string mapping type. These constants are useful for query parameter binding, as
discussed in more detail in chapter 7:

session.createQuery("from Item i where i.description like :desc")
 .setParameter("desc", desc, Hibernate.STRING)
 .list();
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

202 CHAPTER 6

Advanced mapping concepts

These constants are also useful for programmatic manipulation of the Hibernate
mapping metamodel, as discussed in chapter 3.

Of course, Hibernate isn’t limited to the built-in mapping types. We consider the
extensible mapping type system one of the core features and an important aspect
that makes Hibernate so flexible.

Creating custom mapping types
Object-oriented languages like Java make it easy to define new types by writing new
classes. Indeed, this is a fundamental part of the definition of object orientation. If
you were limited to the predefined built-in Hibernate mapping types when declar-
ing properties of persistent classes, you’d lose much of Java’s expressiveness. Fur-
thermore, your domain model implementation would be tightly coupled to the
physical data model, since new type conversions would be impossible.

Most ORM solutions that we’ve seen provide some kind of support for user-
defined strategies for performing type conversions. These are often called convert-
ers. For example, the user would be able to create a new strategy for persisting a
property of JDK type Integer to a VARCHAR column. Hibernate provides a similar,
much more powerful, feature called custom mapping types.

Hibernate provides two user-friendly interfaces that applications may use when
defining new mapping types. These interfaces reduce the work involved in defin-
ing custom mapping types and insulate the custom type from changes to the Hiber-
nate core. This allows you to easily upgrade Hibernate and keep your existing
custom mapping types. You can find many examples of useful Hibernate mapping
types on the Hibernate community website.

The first of the programming interfaces is net.sf.hibernate.UserType. User-
Type is suitable for most simple cases and even for some more complex problems.
Let’s use it in a simple scenario.

Our Bid class defines an amount property; our Item class defines an initial-
Price property, both monetary values. So far, we’ve only used a simple BigDecimal
to represent the value, mapped with big_decimal to a single NUMERIC column.

Suppose we wanted to support multiple currencies in our auction application
and that we had to refactor the existing domain model for this (customer-driven)
change. One way to implement this change would be to add new properties to Bid
and Item: amountCurrency and initialPriceCurrency. We would then map these
new properties to additional VARCHAR columns with the built-in currency mapping
type. We hope you never use this approach!
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 203

Creating a UserType
Instead, we should create a MonetaryAmount class that encapsulates both currency
and amount. Note that this is a class of the domain model; it doesn’t have any
dependency on Hibernate interfaces:

public class MonetaryAmount implements Serializable {

 private final BigDecimal value;
 private final Currency currency;

 public MonetaryAmount(BigDecimal value, Currency currency) {
 this.value = value;
 this.currency = currency;
 }

 public BigDecimal getValue() { return value; }

 public Currency getCurrency() { return currency; }

 public boolean equals(Object o) { ... }
 public int hashCode() { ...}
}

We’ve made MonetaryAmount an immutable class. This is a good practice in Java.
Note that we have to implement equals() and hashCode() to finish the class (there
is nothing special to consider here). We use this new MonetaryAmount to replace the
BigDecimal of the initialPrice property in Item. Of course, we can, and should
use it for all other BigDecimal prices in our persistent classes (such as the
Bid.amount) and even in business logic (for example, in the billing system).

Let’s map this refactored property of Item to the database. Suppose we’re
working with a legacy database that contains all monetary amounts in USD. Our
application is no longer restricted to a single currency (the point of the refactor-
ing), but it takes time to get the changes done by the database team. We need to
convert the amount to USD when we persist the MonetaryAmount and convert it
back to USD when we are loading objects.

For this, we create a MonetaryAmountUserType class that implements the Hiber-
nate interface UserType. Our custom mapping type, is shown in listing 6.1.

package auction.customtypes;

import ...;

public class MonetaryAmountUserType implements UserType {

 private static final int[] SQL_TYPES = {Types.NUMERIC};

Listing 6.1 Custom mapping type for monetary amounts in USD
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

204 CHAPTER 6

Advanced mapping concepts

public int[] sqlTypes() { return SQL_TYPES; }

public Class returnedClass() { return MonetaryAmount.class; }

public boolean equals(Object x, Object y) {
 if (x == y) return true;
 if (x == null || y == null) return false;
 return x.equals(y);
 }

public Object deepCopy(Object value) { return value; }

public boolean isMutable() { return false; }

public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {

 if (resultSet.wasNull()) return null;
 BigDecimal valueInUSD = resultSet.getBigDecimal(names[0]);

 return new MonetaryAmount(valueInUSD, Currency.getInstance)"USD"));
}

public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {
 if (value == null) {
 statement.setNull(index, Types.NUMERIC);
 } else {
 MonetaryAmount anyCurrency = (MonetaryAmount)value;
 MonetaryAmount amountInUSD =
 MonetaryAmount.convert(anyCurrency,
 Currency.getInstance("USD"));
 // The convert() method isn't shown in our examples
 statement.setBigDecimal(index, amountInUSD.getValue());
 }
 }
}

The sqlTypes() method tells Hibernate what SQL column types to use for DDL
schema generation. The type codes are defined by java.sql.Types. Notice that
this method returns an array of type codes. A UserType may map a single property
to multiple columns, but our legacy data model only has a single NUMERIC.

returnedClass() tells Hibernate what Java type is mapped by this UserType.

B

C

D

E

F

G

H

B

C

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 205

The UserType is responsible for dirty-checking property values. The equals()
method compares the current property value to a previous snapshot and deter-
mines whether the property is dirty and must by saved to the database.

The UserType is also partially responsible for creating the snapshot in the first
place. Since MonetaryAmount is an immutable class, the deepCopy() method
returns its argument. In the case of a mutable type, it would need to return a copy
of the argument to be used as the snapshot value. This method is also called when
an instance of the type is written to or read from the second-level cache.

Hibernate can make some minor performance optimizations for immutable types
like this one. The isMutable() method tells Hibernate that this type is immutable.

The nullSafeGet() method retrieves the property value from the JDBC ResultSet.
You can also access the owner of the component if you need it for the conversion.
All database values are in USD, so you have to convert the MonetaryAmount
returned by this method before you show it to the user.

The nullSafeSet() method writes the property value to the JDBC PreparedState-
ment. This method takes whatever currency is set and converts it to a simple Big-
Decimal USD value before saving.

We now map the initialPrice property of Item as follows:

<property name="initialPrice"
 column="INITIAL_PRICE"
 type="auction.customtypes.MonetaryAmountUserType"/>

This is the simplest kind of transformation that a UserType could perform. Much
more sophisticated things are possible. A custom mapping type could perform val-
idation; it could read and write data to and from an LDAP directory; it could even
retrieve persistent objects from a different Hibernate Session for a different data-
base. You’re limited mainly by your imagination!

We’d prefer to represent both the amount and currency of our monetary
amounts in the database, especially if the schema isn’t legacy but can be defined
(or updated quickly). We could still use a UserType, but then we wouldn’t be able
to use the amount (or currency) in object queries. The Hibernate query engine
(discussed in more detail in the next chapter) wouldn’t know anything about the
individual properties of MonetaryAmount. You can access the properties in your Java
code (MonetaryAmount is just a regular class of the domain model, after all), but not
in Hibernate queries.

D

E

F

G

H

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

206 CHAPTER 6

Advanced mapping concepts

Instead, we should use a CompositeUserType if we need the full power of Hiber-
nate queries. This (slightly more complex) interface exposes the properties of our
MonetaryAmount to Hibernate.

Creating a CompositeUserType
To demonstrate the flexibility of custom mapping types, we don’t change our Mon-
etaryAmount class (and other persistent classes) at all—we change only the custom
mapping type, as shown in listing 6.2.

package auction.customtypes;

import ...;

public class MonetaryAmountCompositeUserType
 implements CompositeUserType {

 public Class returnedClass() { return MonetaryAmount.class; }

 public boolean equals(Object x, Object y) {
 if (x == y) return true;
 if (x == null || y == null) return false;
 return x.equals(y);
 }

 public Object deepCopy(Object value) {
 return value; // MonetaryAmount is immutable
 }

 public boolean isMutable() { return false; }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 SessionImplementor session,
 Object owner)
 throws HibernateException, SQLException {

 if (resultSet.wasNull()) return null;
 BigDecimal value = resultSet.getBigDecimal(names[0]);
 Currency currency =
 Currency.getInstance(resultSet.getString(names[1]));
 return new MonetaryAmount(value, currency);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index,

Listing 6.2 Custom mapping type for monetary amounts in new database schemas
 SessionImplementor session)
 throws HibernateException, SQLException {

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 207

 if (value==null) {
 statement.setNull(index, Types.NUMERIC);
 statement.setNull(index+1, Types.VARCHAR);
 } else {
 MonetaryAmount amount = (MonetaryAmount) value;
 String currencyCode =
 amount.getCurrency().getCurrencyCode();
 statement.setBigDecimal(index, amount.getValue());
 statement.setString(index+1, currencyCode);
 }
 }

 public String[] getPropertyNames() {
 return new String[] { "value", "currency" };

 }

 public Type[] getPropertyTypes() {
 return new Type[] { Hibernate.BIG_DECIMAL, Hibernate.CURRENCY };
 }

 public Object getPropertyValue(Object component,
 int property)
 throws HibernateException {
 MonetaryAmount MonetaryAmount = (MonetaryAmount) component;
 if (property == 0)
 return MonetaryAmount.getValue()();
 else
 return MonetaryAmount.getCurrency();
 }

 public void setPropertyValue(Object component,
 int property,
 Object value) throws HibernateException {
 throw new UnsupportedOperationException("Immutable!");
 }

 public Object assemble(Serializable cached,
 SessionImplementor session,
 Object owner)
 throws HibernateException {
 return cached;
 }

 public Serializable disassemble(Object value,
 SessionImplementor session)
 throws HibernateException {
 return (Serializable) value;
 }

}

B

C

D

E

F

G

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

208 CHAPTER 6

Advanced mapping concepts

A CompositeUserType has its own properties, defined by getPropertyNames().

The properties each have their own type, as defined by getPropertyTypes().

The getPropertyValue() method returns the value of an individual property of
the MonetaryAmount.

Since MonetaryAmount is immutable, we can’t set property values individually (no
problem; this method is optional).

The assemble() method is called when an instance of the type is read from the
second-level cache.

The disassemble() method is called when an instance of the type is written to the
second-level cache.

The order of properties must be the same in the getPropertyNames(), getProper-
tyTypes(), and getPropertyValues() methods. The initialPrice property now
maps to two columns, so we declare both in the mapping file. The first column
stores the value; the second stores the currency of the MonetaryAmount (the order
of columns must match the order of properties in your type implementation):

<property name="initialPrice"
 type="auction.customtypes.MonetaryAmountCompositeUserType">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>

In a query, we can now refer to the amount and currency properties of the custom
type, even though they don’t appear anywhere in the mapping document as indi-
vidual properties:

from Item i
where i.initialPrice.value > 100.0
 and i.initialPrice.currency = 'AUD'

We’ve expanded the buffer between the Java object model and the SQL database
schema with our custom composite type. Both representations can now handle
changes more robustly.

If implementing custom types seems complex, relax; you rarely need to use a
custom mapping type. An alternative way to represent the MonetaryAmount class is
to use a component mapping, as in section 3.5.2, “Using components.” The deci-
sion to use a custom mapping type is often a matter of taste.

Let’s look at an extremely important, application of custom mapping types. The

B

C

D

E

F

G

type-safe enumeration design pattern is found in almost all enterprise applications.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Understanding the Hibernate type system 209

Using enumerated types
An enumerated type is a common Java idiom where a class has a constant (small)
number of immutable instances.

For example, the Comment class (users giving comments about other users in
CaveatEmptor) defines a rating. In our current model, we have a simple int prop-
erty. A typesafe (and much better) way to implement different ratings (after all, we
probably don’t want arbitrary integer values) is to create a Rating class as follows:

package auction;

public class Rating implements Serializable {

 private String name;

 public static final Rating EXCELLENT = new Rating("Excellent");
 public static final Rating OK = new Rating("OK");
 public static final Rating LOW = new Rating("Low");
 private static final Map INSTANCES = new HashMap();

 static {
 INSTANCES.put(EXCELLENT.toString(), EXCELLENT);
 INSTANCES.put(OK.toString(), OK);
 INSTANCES.put(LOW.toString(), LOW);
 }
 private Rating(String name) {
 this.name=name;
 }

 public String toString() {
 return name;
 }

 Object readResolve() {
 return getInstance(name);
 }

 public static Rating getInstance(String name) {
 return (Rating) INSTANCES.get(name);
 }
}

We then change the rating property of our Comment class to use this new type. In
the database, ratings would be represented as VARCHAR values. Creating a UserType
for Rating-valued properties is straightforward:

package auction.customtypes;

import ...;
public class RatingUserType implements UserType {
 private static final int[] SQL_TYPES = {Types.VARCHAR};

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

210 CHAPTER 6

Advanced mapping concepts

 public int[] sqlTypes() { return SQL_TYPES; }
 public Class returnedClass() { return Rating.class; }
 public boolean equals(Object x, Object y) { return x == y; }
 public Object deepCopy(Object value) { return value; }
 public boolean isMutable() { return false; }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {

 String name = resultSet.getString(names[0]);
 return resultSet.wasNull() ? null : Rating.getInstance(name);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {

 if (value == null) {
 statement.setNull(index, Types.VARCHAR);
 } else {
 statement.setString(index, value.toString());
 }
 }
}

This code is basically the same as the UserType implemented earlier. The imple-
mentation of nullSafeGet() and nullSafeSet() is again the most interesting part,
containing the logic for the conversion.

One problem you might run into is using enumerated types in Hibernate que-
ries. Consider the following query in HQL that retrieves all comments rated “Low”:

Query q =
 session.createQuery("from Comment c where c.rating = Rating.LOW");

This query doesn’t work, because Hibernate doesn’t know what to do with Rat-
ing.LOW and will try to use it as a literal. We have to use a bind parameter and set
the rating value for the comparison dynamically (which is what we need for other
reasons most of the time):

Query q =
 session.createQuery("from Comment c where c.rating = :rating");
q.setParameter("rating",
 Rating.LOW,
 Hibernate.custom(RatingUserType.class));
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping collections of value types 211

The last line in this example uses the static helper method Hibernate.custom() to
convert the custom mapping type to a Hibernate Type, a simple way to tell Hiber-
nate about our enumeration mapping and how to deal with the Rating.LOW value.

If you use enumerated types in many places in your application, you may want
to take this example UserType and make it more generic. JDK 1.5 introduces a
new language feature for defining enumerated types, and we recommend using a
custom mapping type until Hibernate gets native support for JDK 1.5 features.
(Note that the Hibernate2 PersistentEnum is considered deprecated and
shouldn’t be used.)

We’ve now discussed all kinds of Hibernate mapping types: built-in mapping
types, user-defined custom types, and even components (chapter 3). They’re all
considered value types, because they map objects of value type (not entities) to the
database. We’re now ready to explore collections of value typed instances.

6.2 Mapping collections of value types

You’ve already seen collections in the context of entity relationships in chapter 3.
In this section, we discuss collections that contain instances of a value type, includ-
ing collections of components. Along the way, you’ll meet some of the more
advanced features of Hibernate collection mappings, which can also be used for
collections that represent entity associations, as discussed later in this chapter.

6.2.1 Sets, bags, lists, and maps

Suppose that our sellers can attach images to Items. An image is accessible only via
the containing item; it doesn’t need to support associations to any other entity in
our system. In this case, it isn’t unreasonable to model the image as a value type.
Item would have a collection of images that Hibernate would consider to be part
of the Item, without its own lifecycle.

We’ll run through several ways to implement this behavior using Hibernate. For
now, let’s assume that the image is stored somewhere on the filesystem and that we
keep just the filename in the database. How images are stored and loaded with this
approach isn’t discussed.

Using a set
The simplest implementation is a Set of String filenames. We add a collection
property to the Item class:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

212 CHAPTER 6

Advanced mapping concepts

private Set images = new HashSet();
...
public Set getImages() {
 return this.images;
}

public void setImages(Set images) {
 this.images = images;
}

We use the following mapping in the Item:

<set name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</set>

The image filenames are stored in a table named ITEM_IMAGE. From the database’s
point of view, this table is separate from the ITEM table; but Hibernate hides this
fact from us, creating the illusion that there is a single entity. The <key> element
declares the foreign key, ITEM_ID of the parent entity. The <element> tag declares
this collection as a collection of value type instances: in this case, of strings.

A set can’t contain duplicate elements, so the primary key of the ITEM_IMAGE
table consists of both columns in the <set> declaration: ITEM_ID and FILENAME. See
figure 6.1 for a table schema example.

It doesn’t seem likely that we would allow the user to attach the same image
more than once, but suppose we did. What kind of mapping would be appropriate?

Using a bag
An unordered collection that permits duplicate elements is called a bag. Curiously,
the Java Collections framework doesn’t define a Bag interface. Hibernate lets you
use a List in Java to simulate bag behavior; this is consistent with common usage
in the Java community. Note, however, that the List contract specifies that a list is
an ordered collection; Hibernate won’t preserve the ordering when persisting a
List with bag semantics. To use a bag, change the type of images in Item from Set
to List, probably using ArrayList as an implementation. (You could also use a
Collection as the type of the property.)

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage2.jpg
barimage1.jpg

Figure 6.1

Table structure and example data for
a collection of strings

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping collections of value types 213

Changing the table definition from the previous section to permit duplicate FILE-
NAMEs requires another primary key. An <idbag> mapping lets us attach a surrogate
key column to the collection table, much like the synthetic identifiers we use for
entity classes:

<idbag name="images" lazy="true" table="ITEM_IMAGE">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

In this case, the primary key is the generated ITEM_IMAGE_ID. You can see a graph-
ical view of the database tables in figure 6.2.

You might be wondering why the Hibernate mapping was <idbag> and if there
is also a <bag> mapping. You’ll soon learn more about bags, but a more likely sce-
nario involves preserving the order in which images were attached to the Item.
There are a number of good ways to do this; one way is to use a real list instead of
a bag.

Using a list
A <list> mapping requires the addition of an index column to the database table.
The index column defines the position of the element in the collection. Thus,
Hibernate can preserve the ordering of the collection elements when retrieving
the collection from the database if we map the collection as a <list>:

<list name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="POSITION"/>
 <element type="string" column="FILENAME" not-null="true"/>
</list>

The primary key consists of the ITEM_ID and POSITION columns. Notice that dupli-
cate elements (FILENAME) are allowed, which is consistent with the semantics of a

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3

Figure 6.2
Table structure using a
bag with a surrogate
primary key
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

214 CHAPTER 6

Advanced mapping concepts

list. (We don’t have to change the Item class; the types we used earlier for the bag
are the same.)

If the collection is [fooimage1.jpg, fooimage1.jpg, fooimage2.jpg], the POSI-
TION column contains the values 0, 1, and 2, as shown in figure 6.3.

Alternatively, we could use a Java array instead of a list. Hibernate supports this
usage; indeed, the details of an array mapping are virtually identical to those of a
list. However, we very strongly recommend against the use of arrays, since arrays
can’t be lazily initialized (there is no way to proxy an array at the virtual machine
level).

Now, suppose that our images have user-entered names in addition to the file-
names. One way to model this in Java would be to use a Map, with names as keys and
filenames as values.

Using a map
Mapping a <map> (pardon us) is similar to mapping a list:

<map name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The primary key consists of the ITEM_ID and IMAGE_NAME columns. The IMAGE_NAME
column stores the keys of the map. Again, duplicate elements are allowed; see fig-
ure 6.4 for a graphical view of the tables.

This Map is unordered. What if we want to always sort our map by the name of
the image?

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

POSITION

0
1
2

Figure 6.3
Tables for a list with
positional elements

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

IMAGE_NAME

Foo Image 1
Foo Image One
Foo Image 2

Figure 6.4
Tables for a map,
using strings as

indexes and elements

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping collections of value types 215

Sorted and ordered collections
In a startling abuse of the English language, the words sorted and ordered mean dif-
ferent things when it comes to Hibernate persistent collections. A sorted collection is
sorted in memory using a Java comparator. An ordered collection is ordered at the
database level using an SQL query with an order by clause.

Let’s make our map of images a sorted map. This is a simple change to the map-
ping document:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

By specifying sort="natural", we tell Hibernate to use a SortedMap, sorting the
image names according to the compareTo() method of java.lang.String. If you
want some other sorted order—for example, reverse alphabetical order—you can
specify the name of a class that implements java.util.Comparator in the sort
attribute. For example:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="auction.util.comparator.ReverseStringComparator">

 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The behavior of a Hibernate sorted map is identical to java.util.TreeMap. A
sorted set (which behaves like java.util.TreeSet) is mapped in a similar way:

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</set>

Bags can’t be sorted (there is no TreeBag, unfortunately), nor may lists; the order
of list elements is defined by the list index.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

216 CHAPTER 6

Advanced mapping concepts

Alternatively, you might choose to use an ordered map, using the sorting capa-
bilities of the database instead of (probably less efficient) in-memory sorting:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The expression in the order-by attribute is a fragment of an SQL order by clause.
In this case, we order by the IMAGE_NAME column, in ascending order. You can even
write SQL function calls in the order-by attribute:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="lower(FILENAME) asc">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

Notice that you can order by any column of the collection table. Both sets and bags
accept the order-by attribute; but again, lists don’t. This example uses a bag:

<idbag name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="ITEM_IMAGE_ID desc">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

Under the covers, Hibernate uses a LinkedHashSet and a LinkedHashMap to imple-
ment ordered sets and maps, so this functionality is only available in JDK 1.4 or
later. Ordered bags are possible in all JDK versions.

In a real system, it’s likely that we’d need to keep more than just the image name
and filename; we’d probably need to create an Image class for this extra informa-
tion. We could map Image as an entity class; but since we’ve already concluded that
this isn’t absolutely necessary, let’s see how much further we can get without an

Image entity (which would require an association mapping and more complex life-
cycle handling).

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping collections of value types 217

In chapter 3, you saw that Hibernate lets you map user-defined classes as compo-
nents, which are considered to be value types. This is still true even when compo-
nent instances are collection elements.

Collections of components
Our Image class defines the properties name, filename, sizeX, and sizeY. It has a sin-
gle association, with its parent Item class, as shown in figure 6.5.

As you can see from the aggregation association style (the black diamond),
Image is a component of Item, and Item is the entity that is responsible for the life-
cycle of Image. References to images aren’t shared, so our first choice is a Hibernate
component mapping. The multiplicity of the association further declares this asso-
ciation as many-valued—that is, many (or zero) Images for the same Item.

Writing the component class
First, we implement the Image class. This is just a POJO, with nothing special to con-
sider. As you know from chapter 3, component classes don’t have an identifier
property. However, we must implement equals() (and hashCode()) to compare the
name, filename, sizeX, and sizeY properties, to allow Hibernate’s dirty checking to
function correctly. Strictly speaking, implementing equals() and hashCode() isn’t
required for all component classes. However, we recommend it for any component
class because the implementation is straightforward and “better safe than sorry” is
a good motto.

The Item class hasn’t changed: it still has a Set of images. Of course, the objects
in this collection are no longer Strings. Let’s map this to the database.

Mapping the collection
Collections of components are mapped similarly to other collections of value type
instances. The only difference is the use of <composite-element> in place of the

Figure 6.5
Collection of Image components in Item
familiar <element> tag. An ordered set of images could be mapped like this:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

218 CHAPTER 6

Advanced mapping concepts

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <property name="name" column="IMAGE_NAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

This is a set, so the primary key consists of the key column and all element columns:
ITEM_ID, IMAGE_NAME, FILENAME, SIZEX, and SIZEY. Since these columns all appear
in the primary key, we declare them with not-null="true". (This is clearly a disad-
vantage of this particular mapping.)

Bidirectional navigation
The association from Item to Image is unidirectional. If the Image class also
declared a property named item, holding a reference back to the owning Item,
we’d add a <parent> tag to the mapping:

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <parent name="item"/>
 <property name="name" column="IMAGE_NAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

True bidirectional navigation is impossible, however. You can’t retrieve an Image
independently and then navigate back to its parent Item. This is an important
issue: You’ll be able to load Image instances by querying for them, but components,
like all value types, are retrieved by value. The Image objects won’t have a reference
to the parent (the property is null). You should use a full parent/child entity asso-
ciation, as described in chapter 3, if you need this kind of functionality.

Still, declaring all properties as not-null is something you should probably
avoid. We need a better primary key for the IMAGE table.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping collections of value types 219

Avoiding not-null columns
If a set of Images isn’t what we need, other collection styles are possible. For exam-
ple, an <idbag> offers a surrogate collection key:

<idbag name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <property name="name" column="IMAGE_NAME"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</idbag>

This time, the primary key is the ITEM_IMAGE_ID column, and it isn’t important that
we implement equals() and hashCode() (at least, Hibernate doesn't require it).
Nor do we need to declare the properties with not-null="true". They may be nul-
lable in the case of an idbag, as shown in figure 6.6.

We should point out that there isn’t a great deal of difference between this bag
mapping and a standard parent/child entity relationship. The tables are identical,
and even the Java code is extremely similar; the choice is mainly a matter of taste.
Of course, a parent/child relationship supports shared references to the child
entity and true bidirectional navigation.

We could even remove the name property from the Image class and again use the
image name as the key of a map:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3

IMAGE_NAME

Foo Image 1
Foo Image 1
Bar Image 1

Figure 6.6
Collection of Image
components using a bag
with a surrogate key
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

220 CHAPTER 6

Advanced mapping concepts

 <index type="string" column="IMAGE_NAME"/>
 <composite-element class="Image">
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</map>

As before, the primary key is composed of ITEM_ID and IMAGE_NAME.
A composite element class like Image isn’t limited to simple properties of basic

type like filename. It may contain components, using the <nested-composite-ele-
ment> declaration, and even <many-to-one> associations to entities. It may not own
collections, however. A composite element with a many-to-one association is useful,
and we’ll come back to this kind of mapping later in this chapter.

We’re finally finished with value types; we’ll continue with entity association
mapping techniques. The simple parent/child association we mapped in chapter
3 is just one of many possible association mapping styles. Most of them are consid-
ered exotic and are rare in practice.

6.3 Mapping entity associations

When we use the word associations, we’re always referring to relationships between
entities. In chapter 3, we demonstrated a unidirectional many-to-one association,
made it bidirectional, and finally turned it into a parent/child relationship (one-
to-many and many-to-one).

One-to-many associations are easily the most important kind of association. In
fact, we go so far as to discourage the use of more exotic association styles when a
simple bidirectional many-to-one/one-to-many will do the job. In particular, a
many-to-many association may always be represented as two many-to-one associa-
tions to an intervening class. This model is usually more easily extensible, so we
tend not to use many-to-many associations in our applications.

Armed with this disclaimer, let’s investigate Hibernate’s rich association map-
pings starting with one-to-one associations.

6.3.1 One-to-one associations

We argued in chapter 3 that the relationships between User and Address (the user
has both a billingAddress and a homeAddress) were best represented using <com-
ponent> mappings. This is usually the simplest way to represent one-to-one rela-
tionships, since the lifecycle of one class is almost always dependent on the lifecycle

of the other class, and the association is a composition.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 221

But what if we want a dedicated table for Address and to map both User and
Address as entities? Then, the classes have a true one-to-one association. In this
case, we start with the following mapping for Address:

<class name="Address" table="ADDRESS">
 <id name="id" column="ADDRESS_ID">
 <generator class="native"/>
 </id>
 <property name="street"/>
 <property name="city"/>
 <property name="zipcode"/>
</class>

Note that Address now requires an identifier property; it’s no longer a compo-
nent class. There are two different ways to represent a one-to-one association to
this Address in Hibernate. The first approach adds a foreign key column to the
USER table.

Using a foreign key association
The easiest way to represent the association from User to its billingAddress is to
use a <many-to-one> mapping with a unique constraint on the foreign key. This may
surprise you, since many doesn’t seem to be a good description of either end of a
one-to-one association! However, from Hibernate’s point of view, there isn’t much
difference between the two kinds of foreign key associations. So, we add a foreign
key column named BILLING_ADDRESS_ID to the USER table and map it as follows:

<many-to-one name="billingAddress"
 class="Address"
 column="BILLING_ADDRESS_ID"
 cascade="save-update"/>

Note that we’ve chosen save-update as the cascade style. This means the Address
will become persistent when we create an association from a persistent User. Prob-
ably, cascade="all" makes sense for this association, since deletion of the User
should result in deletion of the Address. (Remember that Address now has its own
entity lifecycle.)
Our database schema still allows duplicate values in the BILLING_ADDRESS_ID col-
umn of the USER table, so two users could have a reference to the same address. To
make this association truly one-to-one, we add unique="true" to the <many-to-
one> element, constraining the relational model so that there can be only one user
per address:

<many-to-one name="billingAddress"

 class="Address"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

222 CHAPTER 6

Advanced mapping concepts

 column="BILLING_ADDRESS_ID"
 cascade="all"
 unique="true"/>

This change adds a unique constraint to the BILLING_ADDRESS_ID column in the
DDL generated by Hibernate—resulting in the table structure illustrated by
figure 6.7.

But what if we want this association to be navigable from Address to User in Java?
From chapter 3, you know how to turn it into a bidirectional one-to-many collec-
tion—but we’ve decided that each Address has just one User, so this can’t be the
right solution. We don’t want a collection of users in the Address class. Instead, we
add a property named user (of type User) to the Address class, and map it like so
in the mapping of Address:

<one-to-one name="user"
 class="User"
 property-ref="billingAddress"/>

This mapping tells Hibernate that the user association in Address is the reverse
direction of the billingAddress association in User.

In code, we create the association between the two objects as follows:

Address address = new Address();
address.setStreet("646 Toorak Rd");
address.setCity("Toorak");
address.setZipcode("3000");

Transaction tx = session.beginTransaction();
User user = (User) session.get(User.class, userId);
address.setUser(user);
user.setBillingAddress(address);
tx.commit();

<<Table>>
Address

ADDRESS_ID <<PK>>
STREET
ZIPCODE
CITY

<<Table>>
User

USER_ID <<PK>>
BILLING_ADDRESS_ID <<FK>>
FIRSTNAME
LASTNAME
USERNAME
PASSWORD
EMAIL
RANKING
CREATED

Figure 6.7
A one-to-one association with an
extra foreign key column
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 223

To finish the mapping, we have to map the homeAddress property of User. This is
easy enough: we add another <many-to-one> element to the User metadata, map-
ping a new foreign key column, HOME_ADDRESS_ID:

<many-to-one name="homeAddress"
 class="Address"
 column="HOME_ADDRESS_ID"
 cascade="save-update"
 unique="true"/>

The USER table now defines two foreign keys referencing the primary key of the
ADDRESS table: HOME_ADDRESS_ID and BILLING_ADDRESS_ID.

Unfortunately, we can’t make both the billingAddress and homeAddress associ-
ations bidirectional, since we don’t know if a particular address is a billing address
or a home address. (We can’t decide which property name—billingAddress or
homeAddress—to use for the property-ref attribute in the mapping of the user
property.) We could try making Address an abstract class with subclasses HomeAd-
dress and BillingAddress and mapping the associations to the subclasses. This
approach would work, but it’s complex and probably not sensible in this case.

Our advice is to avoid defining more than one one-to-one association between
any two classes. If you must, leave the associations unidirectional. If you don’t have
more than one—if there really is exactly one instance of Address per User—there
is an alternative approach to the one we’ve just shown. Instead of defining a for-
eign key column in the USER table, you can use a primary key association.

Using a primary key association
Two tables related by a primary key association share the same primary key values.
The primary key of one table is also a foreign key of the other. The main difficulty
with this approach is ensuring that associated instances are assigned the same pri-
mary key value when the objects are saved. Before we try to solve this problem, let’s
see how we would map the primary key association.

For a primary key association, both ends of the association are mapped using the
<one-to-one> declaration. This also means that we can no longer map both the bill-
ing and home address, only one property. Each row in the USER table has a
corresponding row in the ADDRESS table. Two addresses would require an addi-
tional table, and this mapping style therefore wouldn’t be adequate. Let’s call this
single address property address and map it with the User:

<one-to-one name="address"
 class="Address"
 cascade="save-update"/>
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

224 CHAPTER 6

Advanced mapping concepts

Next, here’s the user of Address:

<one-to-one name="user"
 class="User"
 constrained="true"/>

The most interesting thing here is the use of constrained="true". It tells Hiber-
nate that there is a foreign key constraint on the primary key of ADDRESS that refers
to the primary key of USER.

Now we must ensure that newly saved instances of Address are assigned the same
identifier value as their User. We use a special Hibernate identifier-generation strat-
egy called foreign:

<class name="Address" table="ADDRESS">
 <id name="id" column="ADDRESS_ID">
 <generator class="foreign">
 <param name="property">user</param>
 </generator>
 </id>
 ...
 <one-to-one name="user"
 class="User"
 constrained="true"/>
</class>

The <param> named property of the foreign generator allows us to name a one-to-
one association of the Address class—in this case, the user association. The foreign
generator inspects the associated object (the User) and uses its identifier as the
identifier of the new Address. Look at the table structure in figure 6.8.

The code to create the object association is unchanged for a primary key associ-
ation; it’s the same code we used earlier for the many-to-one mapping style.

<<Table>>
Address

ADDRESS_ID <<PK>> <<FK>>
STREET
ZIPCODE
CITY

<<Table>>
User

USER_ID <<PK>>
FIRSTNAME
LASTNAME
USERNAME
PASSWORD
EMAIL
RANKING
CREATED

Figure 6.8
The tables for a one-to-one association
with shared primary key values
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 225

There is now just one remaining entity association multiplicity we haven’t dis-
cussed: many-to-many.

6.3.2 Many-to-many associations

The association between Category and Item is a many-to-many association, as you
can see in figure 6.9.

In a real system, we might not use a many-to-many association. In our experi-
ence, there is almost always other information that must be attached to each link
between associated instances (for example, the date and time when an item was set
in a category), and the best way to represent this information is via an intermediate
association class. In Hibernate, we could map the association class as an entity and
use two one-to-many associations for either side. Perhaps more conveniently, we
could also use a composite element class, a technique we’ll show you later.

Nevertheless, it’s the purpose of this section to implement a real many-to-many
entity association. Let’s start with a unidirectional example.

A unidirectional many-to-many association
If you only require unidirectional navigation, the mapping is straightforward. Uni-
directional many-to-many associations are no more difficult than the collections of
value type instances we covered previously. For example, if the Category has a set
of Items, we can use this mapping:

<set name="items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</set>

Figure 6.9
A many-to-many valued
association between
Category and Item
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

226 CHAPTER 6

Advanced mapping concepts

Just like a collection of value type instances, a many-to-many association has its own
table, the link table or association table. In this case, the link table has two columns:
the foreign keys of the CATEGORY and ITEM tables. The primary key is composed of
both columns. The full table structure is shown in figure 6.10.

We can also use a bag with a separate primary key column:

<idbag name="items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <collection-id type="long" column="CATEGORY_ITEM_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</idbag>

As usual with an <idbag> mapping, the primary key is a surrogate key column,
CATEGORY_ITEM_ID. Duplicate links are therefore allowed; the same Item can be
added twice to a particular Category. (This doesn’t seem to be a very useful feature.)

We can even use an indexed collection (a map or list). The following example
uses a list:

<list name="items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <index column="DISPLAY_POSITION"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</list>

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

<<Table>>
CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>
ITEM_ID <<PK>> <<FK>>

Figure 6.10
Many-to-many entity
association mapped to

an association table

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 227

The primary key consists of the CATEGORY_ID and DISPLAY_POSITION columns. This
mapping guarantees that every Item knows its position in the Category.

Creating an object association is easy:

Transaction tx = session.beginTransaction();
Category cat = (Category) session.get(Category.class, categoryId);
Item item = (Item) session.get(Item.class, itemId);

cat.getItems().add(item);

tx.commit();

Bidirectional many-to-many associations are slightly more difficult.

A bidirectional many-to-many association
When we mapped a bidirectional one-to-many association in chapter 3 (section 3.7,
“Introducing associations”), we explained why one end of the association must be
mapped with inverse="true". We encourage you to review that explanation now.

The same principle applies to bidirectional many-to-many associations: each row
of the link table is represented by two collection elements, one element at each
end of the association. An association between an Item and a Category is repre-
sented in memory by the Item instance belonging to the items collection of the
Category but also by the Category instance belonging to the categories collection
of the Item.

Before we discuss the mapping of this bidirectional case, you must be aware that
the code to create the object association also changes:

cat.getItems.add(item);
item.getCategories().add(category);

As always, a bidirectional association (no matter of what multiplicity) requires that
you set both ends of the association.

When you map a bidirectional many-to-many association, you must declare one
end of the association using inverse="true" to define which side’s state is used to
update the link table. You can choose for yourself which end that should be.

Recall this mapping for the items collection from the previous section:

<class name="Category" table="CATEGORY">
 ... <
 set name="items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

228 CHAPTER 6

Advanced mapping concepts

 <many-to-many class="Item" column="ITEM_ID"/>
 </set>
</class>

We can reuse this mapping for the Category end of the bidirectional association.
We map the Item end as follows:

<class name="Item" table="ITEM">
 ...
 <set name="categories"
 table="CATEGORY_ITEM"
 lazy="true"
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Item" column="CATEGORY_ID"/>
 </set>
</class>

Note the use of inverse="true". Once again, this setting tells Hibernate to ignore
changes made to the categories collection and use the other end of the associa-
tion (the items collection) as the representation that should be synchronized with
the database if we manipulate the association in Java code.

We’ve chosen cascade="save-update" for both ends of the collection; this isn’t
unreasonable. On the other hand, cascade="all", cascade="delete", and cas-
cade="all-delete-orphans" aren’t meaningful for many-to-many associations,
since an instance with potentially many parents shouldn’t be deleted when just one
parent is deleted.

What kinds of collections may be used for bidirectional many-to-many associa-
tions? Do you need to use the same type of collection at each end? It’s reasonable
to use, for example, a list at the end not marked inverse="true" (or explicitly set
false) and a bag at the end that is marked inverse="true".

You can use any of the mappings we’ve shown for unidirectional many-to-many
associations for the noninverse end of the bidirectional association. <set>,
<idbag>, <list>, and <map> are all possible, and the mappings are identical to those
shown previously.

For the inverse end, <set> is acceptable, as is the following bag mapping:

<class name="Item" table="ITEM">
 ...
 <bag name="categories"
 table="CATEGORY_ITEM”
 lazy="true"
 inverse="true" cascade="save-update">
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 229

 <key column="ITEM_ID"/>
 <many-to-many class="Item" column="CATEGORY_ID"/>
 </bag>
</class>

This is the first time we’ve shown the <bag> declaration: It’s similar to an <idbag>
mapping, but it doesn’t involve a surrogate key column. It lets you use a List (with
bag semantics) in a persistent class instead of a Set. Thus it’s preferred if the non-
inverse side of a many-to-many association mapping is using a map, list, or bag
(which all permit duplicates). Remember that a bag doesn’t preserve the order of
elements, despite the List type in the Java property definition.

No other mappings should be used for the inverse end of a many-to-many asso-
ciation. Indexed collections (lists and maps) can’t be used, since Hibernate won’t
initialize or maintain the index column if inverse="true". This is also true and
important to remember for all other association mappings involving collections:
an indexed collection (or even arrays) can’t be set to inverse="true".

We already frowned at the use of a many-to-many association and suggested the
use of composite element mappings as an alternative. Let’s see how this works.

Using a collection of components for a many-to-many association
Suppose we need to record some information each time we add an Item to a Cat-
egory. For example, we might need to store the date and the name of the user who
added the item to this category. We need a Java class to represent this information:

public class CategorizedItem {
 private String username;
 private Date dateAdded;
 private Item item;
 private Category category;

}

(We omitted the accessors and equals() and hashCode() methods, but they would
be necessary for this component class.)

We map the items collection on Category as follows:

<set name="items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>
 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"
 not-null="true"/>

 <property name="username" column="USERNAME" not-null="true"/>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

230 CHAPTER 6

Advanced mapping concepts

 <property name="dateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

We use the <many-to-one> element to declare the association to Item, and we use
the <property> mappings to declare the extra association-related information. The
link table now has four columns: CATEGORY_ID, ITEM_ID, USERNAME, and DATE_ADDED.
The columns of the CategorizedItem properties should never be null: otherwise
we can’t identify a single link entry, because they’re all part of the table’s primary
key. You can see the table structure in figure 6.11.

In fact, rather than mapping just the username, we might like to keep an
actual reference to the User object. In this case, we have the following ternary
association mapping:

<set name="items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>
 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"
 not-null="true"/>
 <many-to-one name="user"
 class="User"
 column="USER_ID"
 not-null="true"/>
 <property name="dateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
NAME
DESCRIPTION
INITIAL_PRICE

<<Table>>
CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>
ITEM_ID <<PK>> <<FK>>
USERNAME <<PK>>
DATE_ADDED <<PK>>

Figure 6.11
Many-to-many entity
... association table using
a component

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 231

This is a fairly exotic beast! If you find yourself with a mapping like this, you should
ask whether it might be better to map CategorizedItem as an entity class and use
two one-to-many associations. Furthermore, there is no way to make this mapping
bidirectional: a component (such as CategorizedItem) can’t, by definition, have
shared references. You can’t navigate from Item to CategorizedItem.

We talked about some limitations of many-to-many mappings in the previous
section. One of them, the restriction to nonindexed collections for the inverse end
of an association, also applies to one-to-many associations, if they’re bidirectional.
Let’s take a closer look at one-to-many and many-to-one again, to refresh your
memory and elaborate on what we discussed in chapter 3.

One-to-many associations
You already know most of what you need to know about one-to-many associations
from chapter 3. We mapped a typical parent/child relationship between two entity
persistent classes, Item and Bid. This was a bidirectional association, using a <one-
to-many> and a <many-to-one> mapping. The “many” end of this association was
implemented in Java with a Set; we had a collection of bids in the Item class. Let’s
reconsider this mapping and walk through some special cases.

Using a bag with set semantics
For example, if you absolutely need a List of children in your parent Java class,
it’s possible to use a <bag> mapping in place of a set. In our example, first we
have to replace the type of the bids collection in the Item persistent class with a
List. The mapping for the association between Item and Bid is then left essen-
tially unchanged:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>

</class>

<class
 name="Item"
 table="ITEM">
 ...

 <bag
 name="bids"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

232 CHAPTER 6

Advanced mapping concepts

 inverse="true"
 cascade="all-delete-orphan">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </bag>

</class>

We renamed the <set> element to <bag>, making no other changes. Note, however,
that this change isn’t useful: the underlying table structure doesn’t support dupli-
cates, so the <bag> mapping results in an association with set semantics. Some tastes
prefer the use of Lists even for associations with set semantics, but ours doesn’t, so
we recommend using <set> mappings for typical parent/child relationships.

The obvious (and wrong) solution would be to use a real <list> mapping for
the bids with an additional column holding the position of the elements. Remem-
ber the Hibernate limitation we introduced earlier in this chapter: you can’t use
indexed collections on an inverse side of an association. The inverse="true" side
of the association isn’t considered when Hibernate saves the object state, so Hiber-
nate will ignore the index of the elements and not update the position column.

However, if your parent/child relationship will only be unidirectional (naviga-
tion is only possible from parent to child), you could even use an indexed collec-
tion type (because the “many” end would no longer be inverse). Good uses for
unidirectional one-to-many associations are uncommon in practice, and we don’t
have one in our auction application. You may remember that we started with the
Item and Bid mapping in chapter 3, making it first unidirectional, but we quickly
introduced the other side of the mapping.

Let’s find a different example to implement a unidirectional one-to-many asso-
ciation with an indexed collection.

Unidirectional mapping
For the sake of this section, we now suppose that the association between Category
and Item is to be remodeled as a one-to-many association (an item now belongs to
at most one category) and further that the Item doesn’t own a reference to its cur-
rent category. In Java code, we model this as a collection named items in the Cat-
egory class; we don’t have to change anything if we don’t use an indexed collection.
If items is implemented as a Set, we use the following mapping:

<set name="items" lazy="true">
 <key column="CATEGORY_ID"/>
 <one-to-many class="Item"/>

</set>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping entity associations 233

Remember that one-to-many association mappings don’t need to declare a table
name. Hibernate already knows that the column names in the collection mapping
(in this case, only CATEGORY_ID) belong to the ITEM table. The table structure is
shown in figure 6.12.

The other side of the association, the Item class, has no mapping reference to
Category. We can now also use an indexed collection in the Category—for exam-
ple, after we change the items property to List:

<list name="items" lazy="true">
 <key>
 <column name="CATEGORY_ID" not-null="false"/>
 </key>
 <index column="DISPLAY_POSITION/>
 <one-to-many class="Item"/>
</list>

Note the new DISPLAY_POSITION column in the ITEM table, which holds the position
of the Item elements in the collection.

There is an important issue to consider, which, in our experience, puzzles many
Hibernate users at first. In a unidirectional one-to-many association, the foreign
key column CATEGORY_ID in the ITEM must be nullable. An Item could be saved with-
out knowing anything about a Category—it’s a stand-alone entity! This is a consis-
tent model and mapping, and you might have to think about it twice if you deal
with a not-null foreign key and a parent/child relationship. Using a bidirectional
association (and a Set) is the correct solution.

Now that you know about all the association mapping techniques for normal
entities, we still have to consider inheritance and associations to the various levels
of an inheritance hierarchy. What we really want is polymorphic behavior. Let’s see
how Hibernate deals with polymorphic entity associations.

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
CATEGORY_ID <<FK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

Figure 6.12
A standard one-to-many
association using a
foreign key column
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

234 CHAPTER 6

Advanced mapping concepts

6.4 Mapping polymorphic associations

Polymorphism is a defining feature of object-oriented languages like Java. Support
for polymorphic associations and polymorphic queries is a basic feature of an ORM
solution like Hibernate. Surprisingly, we’ve managed to get this far without need-
ing to talk much about polymorphism. Even more surprisingly, there isn’t much to
say on the topic—polymorphism is so easy to use in Hibernate that we don’t need
to spend a lot of effort explaining this feature.

To get an overview, we’ll first consider a many-to-one association to a class that
might have subclasses. In this case, Hibernate guarantees that you can create links
to any subclass instance just as you would to instances of the superclass.

6.4.1 Polymorphic many-to-one associations

A polymorphic association is an association that may refer to instances of a subclass of
the class that was explicitly specified in the mapping metadata. For this example,
imagine that we don’t have many BillingDetails per User, but only one, as shown
in figure 6.13.

We map this association to the abstract class BillingDetails as follows:

<many-to-one name="billingDetails"
 class="BillingDetails"
 column="BILLING_DETAILS_ID"
 cascade="save-update"/>

But since BillingDetails is abstract, the association must refer to an instance of
one of its subclasses—CreditCard or BankAccount—at runtime.

All the association mappings we’ve introduced so far in this chapter support
polymorphism. You don’t have to do anything special to use polymorphic associa-
tions in Hibernate; specify the name of any mapped persistent class in your

CreditCard
type : int

BankAccount
bankName: String

BillingDetails
owner : String
number: String
created : Date

User
firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
created : Date

Figure 6.13

expMonth : String
expYear : String

bankSwift: String The user has only one billing
information object.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping polymorphic associations 235

association mapping (or let Hibernate discover it using reflection); then, if that
class declares any <subclass> or <joined-subclass> elements, the association is
naturally polymorphic.

The following code demonstrates the creation of an association to an instance
of the CreditCard subclass:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpiryDate(ccExpiryDate);

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
user.setBillingDetails(cc);

tx.commit();
session.close();

Now, when we navigate the association in a second transaction, Hibernate automat-
ically retrieves the CreditCard instance:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
// Invoke the pay() method on the actual subclass
user.getBillingDetails().pay(paymentAmount);

tx.commit();
session.close();

There is one thing to watch out for: if BillingDetails was mapped with
lazy="true", Hibernate would proxy the billingDetails association. In this case,
we wouldn’t be able to perform a typecast to the concrete class CreditCard at run-
time, and even the instanceof operator would behave strangely:

User user = (User) session.get(User.class, uid);
BillingDetails bd = user.getBillingDetails();
System.out.println(bd instanceof CreditCard); // prints "false"
CreditCard cc = (CreditCard) bd; // ClassCastException!

In this code, the typecast fails because bd is a proxy instance. When a method is
invoked on the proxy, the call is delegated to an instance of CreditCard that is
fetched lazily. To perform a proxysafe typecast, use Session.load():

User user = (User) session.get(User.class, uid);
BillingDetails bd = user.getBillingDetails();

// Get a proxy of the subclass, doesn't hit the database
CreditCard cc =

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

236 CHAPTER 6

Advanced mapping concepts

 (CreditCard) session.load(CreditCard.class, bd.getId());
expiryDate = cc.getExpiryDate();

After the call to load, bd and cc refer to two different proxy instances, which both
delegate to the same underlying CreditCard instance.

Note that you can avoid these issues by avoiding lazy fetching, as in the following
code, using a query technique discussed in the next chapter:

User user = (User) session.createCriteria(User.class)
 .add(Expression.eq("id", uid))
 .setFetchMode("billingDetails", FetchMode.EAGER)
 .uniqueResult();
// The user's billingDetails were fetched eagerly
CreditCard cc = (CreditCard) user.getBillingDetails();
expiryDate = cc.getExpiryDate();

Truly object-oriented code shouldn’t use instanceof or numerous typecasts. If you
find yourself running into problems with proxies, you should question your design,
asking whether there is a more polymorphic approach.

One-to-one associations are handled the same way. What about many-valued
associations?

6.4.2 Polymorphic collections

Let’s refactor the previous example to its original form in CaveatEmptor. If User
owns many BillingDetails, we use a bidirectional one-to-many. In Billing-
Details, we have the following:

<many-to-one name="user"
 class="User"
 column="USER_ID"/>

In the Users mapping, we have this:

<set name="billingDetails"
 lazy="true"
 cascade="save-update"
 inverse="true">
 <key column="USER_ID"/>
 <one-to-many class="BillingDetails"/>
</set>

Adding a CreditCard is easy:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpiryDate(ccExpiryDate);
Session session = sessions.openSession();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Mapping polymorphic associations 237

Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
// Call convenience method that sets both "ends"
user.addBillingDetails(cc);

tx.commit();
session.close();

As usual, addBillingDetails() calls getBillingDetails().add(cc) and cc.set-
User(this).

We can iterate over the collection and handle instances of CreditCard and
BankAccount polymorphically (we don’t want to bill users multiple times in our
final system, though):

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
Iterator iter = user.getBillingDetails().iterator();
while (iter.hasNext()) {
 BillingDetails bd = (BillingDetails) iter.next();
 // Invoke CreditCard.pay() or BankAccount.pay()
 bd.pay(ccPaymentAmount);
}

tx.commit();
session.close();

In the examples so far, we’ve assumed that BillingDetails is a class mapped
explicitly in the Hibernate mapping document, and that the inheritance mapping
strategy is table-per-hierarchy or table-per-subclass. We haven’t yet considered the
case of a table-per-concrete-class mapping strategy, where BillingDetails

wouldn’t be mentioned explicitly in the mapping file (only in the Java definition
of the subclasses).

6.4.3 Polymorphic associations and table-per-concrete-class

In section 3.6.1, “Table per concrete class,” we defined the table-per-concrete-class
mapping strategy and observed that this mapping strategy makes it difficult to rep-
resent a polymorphic association, because you can’t map a foreign key relationship
to the table of the abstract superclass. There is no table for the superclass with this
strategy; you only have tables for concrete classes.

Suppose that we want to represent a polymorphic many-to-one association from
User to BillingDetails, where the BillingDetails class hierarchy is mapped using
this table-per-concrete-class strategy. There is a CREDIT_CARD table and a
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

238 CHAPTER 6

Advanced mapping concepts

BANK_ACCOUNT table, but no BILLING_DETAILS table. We need two pieces of informa-
tion in the USER table to uniquely identify the associated CreditCard or BankAccount:

■ The name of the table in which the associated instance resides

■ The identifier of the associated instance

The USER table requires the addition of a BILLING_DETAILS_TYPE column, in
addition to the BILLING_DETAILS_ID. We use a Hibernate <any> element to map
this association:

<any name="billingDetails"
 meta-type="string"
 id-type="long"
 cascade="save-update">
 <meta-value value="CREDIT_CARD" class="CreditCard"/>
 <meta-value value="BANK_ACCOUNT"class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

The meta-type attribute specifies the Hibernate type of the BILLING_DETAILS_TYPE
column; the id-type attribute specifies the type of the BILLING_DETAILS_ID col-
umn (CreditCard and BankAccount must have the same identifier type). Note that
the order of the columns is important: first the type, then the identifier.

The <meta-value> elements tell Hibernate how to interpret the value of the
BILLING_DETAILS_TYPE column. We don’t need to use the full table name here—we
can use any value we like as a type discriminator. For example, we can encode the
information in two characters:

<any name="billingDetails"
 meta-type="string"
 id-type="long"
 cascade="save-update">
 <meta-value value="CC" class="CreditCard"/>
 <meta-value value="CA" class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

An example of this table structure is shown in figure 6.14.
Here is the first major problem with this kind of association: we can’t add a for-

eign key constraint to the BILLING_DETAILS_ID column, since some values refer to
the BANK_ACCOUNT table and others to the CREDIT_CARD table. Thus, we need to
come up with some other way to ensure integrity (a trigger, for example).
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 239

Furthermore, it’s difficult to write SQL table joins for this association. In particular,
the Hibernate query facilities don’t support this kind of association mapping, nor
may this association be fetched using an outer join. We discourage the use of <any>
associations for all but the most special cases.

As you can see, polymorphism is messier in the case of a table-per-concrete-class
inheritance mapping strategy. We don’t usually use this mapping strategy when
polymorphic associations are required. As long as you stick to the other inherit-
ance-mapping strategies, polymorphism is straightforward, and you don’t usually
need to think about it.

6.5 Summary

This chapter covered the finer points of ORM and techniques needed to solve the
structural mismatch problem. We can now fully map all the entities and associa-
tions in the CaveatEmptor domain model.

The Hibernate type system distinguishes entities from value types. An entity
instance has its own lifecycle and persistent identity; an instance of a value type is
completely dependant on an owning entity.

Hibernate defines a rich variety of built-in value mapping types. When the pre-
defined types are insufficient, you can easily extend them using custom types or

<<Table>>
CREDIT_CARD

CREDIT_CARD_ID <<PK>>
OWNER
...

<<Table>>
BANK_ACCOUNT

BANK_ACCOUNT_ID <<PK>>
OWNER
...

<<Table>>
USER

USER_ID <<PK>>
BILLING_DETAILS_TYPE <<Discriminator>>
BILLING_DETAILS_ID <<Any>>
FIRSTNAME
LASTNAME
USERNAME
...

Figure 6.14 Using a discriminator column with an any association
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

240 CHAPTER 6

Advanced mapping concepts

component mappings and even implement arbitrary conversions from Java to SQL
data types.

Collection-valued properties are considered to be of value type. A collection
doesn’t have its own persistent identity and belongs to a single owning entity.
You’ve seen how to map collections, including collections of value-typed instances
and many-valued entity associations.

Hibernate supports one-to-one, one-to-many, and many-to-many associations
between entities. In practice, we recommend against the overuse of many-to-many
associations. Associations in Hibernate are naturally polymorphic. We also talked
about bidirectional behavior of such relationships.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Retrieving objects efficiently
This chapter covers

■ Hibernate query features
■ HQL, criteria, and native SQL queries
■ Advanced, reporting, and dynamic queries
■ Runtime fetching and query optimization
241

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

242 CHAPTER 7

Retrieving objects efficiently

Queries are the most interesting part of writing good data access code. A complex
query may require a long time to get right, and its impact on the performance of
an application can be tremendous. On the other hand, writing queries becomes
much easier with more experience, and what seemed difficult at first may only be
a matter of knowing some of the more advanced features of Hibernate.

If you’ve been using handwritten SQL for a number of years, you might be con-
cerned that ORM will take away some of the expressiveness and flexibility that
you’re used to. This isn’t the case with Hibernate.

Hibernate’s powerful query facilities allow you to express almost everything you
commonly (or even uncommonly) need to express in SQL, but in object-oriented
terms—using classes and properties of classes. Of course, some things don’t make
sense in an object-oriented query. For example, the Hibernate query language
doesn’t support database-specific query hints. For these (rare) cases, Hibernate
makes it easy for you to fall back to the native SQL dialect of your database.

In chapter 4, we mentioned that there are three ways to express queries in
Hibernate. First is the HQL:

session.createQuery("from Category c where c.name like 'Laptop%'");

Next is the Criteria API for query by criteria (QBC) and query by example (QBE)):

session.createCriteria(Category.class)
 .add(Expression.like("name", "Laptop%"));

Next, there is direct SQL with automatic mapping of result sets to objects:

session.createSQLQuery(
 "select {c.*} from CATEGORY {c} where NAME like 'Laptop%'",
 "c",
 Category.class);

This chapter covers query techniques using all three methods. You may also use
this chapter as a reference; hence some sections are written in a less verbose style
but show many small code examples for different use cases. We also sometimes
skip optimizations in our CaveatEmptor application for better readability. For
example, instead of referring to the MonetaryAmount class, we use a BigDecimal
amount in comparisons.

First, we show you how queries are executed. Don’t let yourself be distracted by
the queries themselves; we discuss them soon.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Executing queries 243

7.1 Executing queries

The Query and Criteria interfaces both define several methods for controlling
execution of a query. In addition, Query provides methods for binding concrete val-
ues to query parameters. To execute a query in your application, you need to
obtain an instance of one of these interfaces, using the Session.

7.1.1 The query interfaces

To create a new Query instance, call either createQuery() or createSQLQuery().
The createQuery() method prepares an HQL query:

Query hqlQuery = session.createQuery("from User");

The createSQLQuery() is used to create a SQL query, using the native syntax of the
underlying database:

Query sqlQuery = session.createSQLQuery(
 "select {u.*} from USERS {u}", "u",
 User.class
);

In both cases, Hibernate returns a newly instantiated Query object that may be
used to specify exactly how a particular query should be executed, and to execute
the query.

To obtain a Criteria instance, call createCriteria(), passing the class of the
objects you want the query to return. This is also called the root entity of the criteria
query, the User in this example:

Criteria crit = session.createCriteria(User.class);

The Criteria instance may be used in the same way as a Query object—but it’s also
used to construct the object-oriented representation of the query by adding Cri-
terion instances and navigating associations to new Criterias. We discuss this in
much more detail later; for now, let’s continue with query execution.

Paging the result
Pagination is a commonly used technique. Users might see the result of their search
request (for example, for specific Items) as a page. This page shows only a limited
subset (say, 10 Items) at a time, and users can navigate to the next and previous
pages manually. Both the Query and Criteria interfaces support this pagination of
the query result:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

244 CHAPTER 7

Retrieving objects efficiently

Query query =
 session.createQuery("from User u order by u.name asc");
query.setFirstResult(0);
query.setMaxResults(10);

The call to setMaxResults(10) limits the query result set to the first 10 objects
selected by the database. In this criteria query, the requested page starts in the
“middle” of the result set:

Criteria crit = session.createCriteria(User.class);
crit.addOrder(Order.asc("name"));
crit.setFirstResult(40);
crit.setMaxResults(20);
List results = crit.list();

Starting from the fortieth object, we retrieve the next 20 objects. Note that there is
no standard way to express pagination in SQL—but Hibernate knows the tricks to
make this work efficiently on your particular database.

You can use the method-chaining coding style (methods return the receiving
object instead of void) with both the Query and Criteria interfaces, rewriting the
two previous examples as follows:

List results =
 session.createQuery("from User u order by u.name asc")
 .setFirstResult(0)
 .setMaxResults(10)
 .list();

List results =
 session.createCriteria(User.class)
 .addOrder(Order.asc("name"))
 .setFirstResult(40)
 .setMaxResults(20)
 .list();

Chaining method calls is less verbose and is supported by many Hibernate APIs.

Listing and iterating results
The list() method executes the query and returns the results as a list:

List result = session.createQuery("from User").list();

With some queries, we know the result will be only a single instance—for example,
if we want only the highest bid. In this case, we can read it from the result list by
index: result.get(0) or setMaxResult(1). We then execute the query with the
uniqueResult() method, because we know only one object will be returned:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Executing queries 245

Bid maxBid =
 (Bid) session.createQuery("from Bid b order by b.amount desc")
 .setMaxResults(1)
 .uniqueResult();

Bid bid = (Bid) session.createCriteria(Bid.class)
 .add(Expression.eq("id", id))
 .uniqueResult();

If the query returns more than one object, an exception will be thrown.
The Query and Session interfaces also provide the iterate() method, which

returns the same result as list() (or find()) but uses a different strategy for
retrieving the results. When you use iterate() to execute a query, Hibernate
retrieves only the primary key (identifier) values in the first SQL select; it tries to
find the rest of the state of the objects in the cache, before querying again for the
rest of the property values. This technique can be used to optimize loading in spe-
cific cases, as discussed in section 7.6, “Optimizing object retrieval.”

FAQ Is Session.find() faster than Query.list()? The Session API provides
shortcut methods for simple queries. Instead of creating a Query, you can
also call Session.find("from User"). The result is the same as from
Query.list(); one isn’t faster than the other. The same is true for iter-
ate(): You’re free to choose the API. However, it’s highly likely that the
query shortcut methods on the Session API will be removed in the future
to reduce the bloat of session methods. We recommend the Query API.

Finally, the Query interface lets you bind values to query parameters.

7.1.2 Binding parameters

Here’s some code that you should never write:

String queryString =
 "from Item i where i.description like '" + searchString + "'";
List result = session.createQuery(queryString).list();

One reason you should never write this code is that a malicious user could search
for the following item description by entering the value of searchString in a search
dialog box:

foo' and callSomeStoredProcedure() and 'bar' = 'bar

As you can see, the original queryString would no longer be a simple search for a
string, but would also execute a stored procedure in the database! The quote char-

acters aren’t escaped; hence the call to the stored procedure would be just another

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

246 CHAPTER 7

Retrieving objects efficiently

valid expression in the query. If you write a query like this, you open a major
security hole in your application by allowing the execution of arbitrary code on
your database. Users might even (accidentally) crash your application just by put-
ting a single quote in the search string. Never pass unchecked values from user
input to the database! Fortunately, a simple mechanism prevents this mistake.

The JDBC driver includes functionality for safely binding values to SQL parame-
ters. It knows exactly which characters in the parameter value to escape, so the pre-
vious vulnerability doesn’t exist. For example, the quote characters in the given
searchString are escaped; they’re no longer treated as control characters but
rather as a part of the search string value.

Furthermore, when you use parameters, the database can efficiently cache pre-
compiled prepared statements, improving performance significantly.

There are two approaches to parameter binding: using positional parameters or
using named parameters. Hibernate supports JDBC-style positional parameters
(indicated by ? in the query string) as well as named parameters (indicated by
the : prefix).

Using named parameters
Using named parameters, we can rewrite the query as

String queryString =
 "from Item item where item.description like :searchString";

The colon followed by a parameter name indicates a named parameter. Then, we
can use the Query interface to bind a value to the searchString parameter:

List result = session.createQuery(queryString)
 .setString("searchString", searchString)
 .list();

Because searchString is a user-supplied string variable, we use the setString()
method of the Query interface to bind it to the named parameter (searchString).
This code is cleaner, much safer, and performs better, because a single compiled
SQL statement can be reused if only bind parameters change.

Often, you’ll need multiple parameters:

String queryString = "from Item item "
 + "where item.description like :searchString "
 + "and item.date > :minDate";

List result = session.createQuery(queryString)
 .setString("searchString", searchString)
 .setDate("minDate", minDate)

 .list();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Executing queries 247

Using positional parameters
If you prefer, you can use positional parameters:

String queryString = "from Item item "
 + "where item.description like ? "
 + "and item.date > ?";

List result = session.createQuery(queryString)
 .setString(0, searchString)
 .setDate(1, minDate)
 .list();

Not only is this code much less self-documenting than the alternative with named
parameters, it’s also much more vulnerable to easy breakage if we change the query
string slightly:

String queryString = "from Item item "
 + "where item.date > ? "
 + "and item.description like ?";

Every change of the position of the bind parameters requires a change to the
parameter-binding code. This leads to fragile and maintenance-intensive code. We
recommend that you avoid positional parameters.

Last, a named parameter may appear multiple times in the query string:

String userSearch =
 "from User u where u.username like :searchString"
 + " or u.email like :searchString";

List result = session.createQuery(userSearch)
 .setString("searchString", searchString)
 .list();

Binding arbitrary arguments
We’ve used setString() and setDate() to bind arguments to query parameters.
The Query interface provides similar convenience methods for binding arguments
of most of the Hibernate built-in types: everything from setInteger() to setTime-
stamp() and setLocale().

A particularly useful method is setEntity(), which lets you bind a persistent
entity:

session.createQuery("from Item item where item.seller = :seller")
 .setEntity("seller", seller)
 .list();

However, there is also a generic method that allows you to bind an argument of any

Hibernate type:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

248 CHAPTER 7

Retrieving objects efficiently

String queryString = "from Item item "
 + "where item.seller=:seller and "
 + "item.description like :desc";

session.createQuery(queryString)
 .setParameter("seller", seller, Hibernate.entity(User.class))
 .setParameter("desc", description, Hibernate.STRING)
 .list();

This even works for custom user-defined types like MonetaryAmount:

Query q =
 session.createQuery("from Bid bid where bid.amount > :amount");
q.setParameter("amount",
 givenAmount,
 Hibernate.custom(MonetaryAmountUserType.class));
List result = q.list();

For some parameter types, it’s possible to guess the Hibernate type from the
class of the parameter value. In this case, you don’t need to specify the Hiber-
nate type explicitly:

String queryString = "from Item item "
 + "where item.seller = :seller and "
 + "item.description like :desc";

session.createQuery(queryString)
 .setParameter("seller", seller)
 .setParameter("desc", description)
 .list();

As you can see, it even works with entities, such as seller. This approach works
nicely for String, Integer, and Boolean parameters, for example, but not so well
for Date, where the Hibernate type might be timestamp, date, or time. In that case,
you have to use the appropriate binding method or explicitly use Hibernate.TIME
(or any other Hibernate type) as the third argument to setParameter().

If we had a JavaBean with seller and description properties, we could use the
setProperties() method to bind the query parameters. For example, we could
pass query parameters in an instance of the Item class:

Item item = new Item();
item.setSeller(seller);
item.setDescription(description);

String queryString = "from Item item "
 + "where item.seller=:seller and "
 + "item.description like :desc";

session.createQuery(queryString).setProperties(item).list();
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Executing queries 249

setProperties() matches the names of JavaBean properties to named parameters
in the query string, using setParameter() to guess the Hibernate type and bind the
value. In practice, this turns out to be less useful than it sounds, since some com-
mon Hibernate types aren’t guessable (date, in particular).

The parameter-binding methods of Query are null-safe, making this code legal:

session.createQuery("from User as u where u.username = :name")
 .setString("name", null)
 .list();

However, the result of this code is almost certainly not what we intended. The
resulting SQL will contain a comparison like username = null, which always evalu-
ates to null in SQL ternary logic. Instead, we must use the is null operator:

session.createQuery("from User as u where u.email is null").list();

So far, the HQL code examples we’ve shown all use embedded HQL query string
literals. This isn’t unreasonable for simple queries, but once we start considering
complex queries that must be split over multiple lines, it starts to get a bit unwieldy.

7.1.3 Using named queries

We don’t like to see HQL string literals scattered all over the Java code unless
they’re necessary. Hibernate lets you externalize query strings to the mapping
metadata, a technique that is called named queries. This allows you to store all que-
ries related to a particular persistent class (or a set of classes) encapsulated with the
other metadata of that class in an XML mapping file. The name of the query is used
to call it from the application.

The getNamedQuery() method obtains a Query instance for a named query:

session.getNamedQuery("findItemsByDescription")
 .setString("description", description)
 .list();

In this example, we execute the named query findItemsByDescription after bind-
ing a string argument to a named parameter. The named query is defined in map-
ping metadata, e.g. in Item.hbm.xml, using the <query> element:

<query name="findItemsByDescription"><![CDATA[
 from Item item where item.description like :description
]]></query>

Named queries don’t have to be HQL strings; they might even be native SQL que-
ries—and your Java code doesn’t need to know the difference:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

250 CHAPTER 7

Retrieving objects efficiently

<sql-query name="findItemsByDescription"><![CDATA[
 select {i.*} from ITEM {i} where DESCRIPTION like :description
]]>
 <return alias="i" class="Item"/>
</sql-query>

This is useful if you think you might want to optimize your queries later by fine-tun-
ing the SQL. It’s also a good solution if you have to port a legacy application to
Hibernate, where SQL code was isolated from the handcoded JDBC routines. With
named queries, you can easily port the queries one by one to mapping files.

We come back to native SQL queries later in this chapter, but now let’s continue
with basic HQL and criteria queries.

7.2 Basic queries for objects

Let’s start with simple queries to become familiar with the HQL syntax and seman-
tics. Although we show the criteria alternative for most HQL queries, keep in
mind that HQL is the preferred approach for complex queries. Usually, the crite-
ria can be derived if you know the HQL equivalent, it’s much more difficult the
other way around.

NOTE Testing Hibernate queries—You can use two tools to execute Hibernate que-
ries ad hoc: Hibern8IDE, a Java Swing application; and an Eclipse plugin
called Hibernator. Both tools let you select Hibernate mapping docu-
ments, connect to the database, and then view the result of HQL queries
you type interactively. Hibern8IDE even lets you prototype criteria que-
ries by providing a Java BeanShell. You can find links to both tools on the
Hibernate project web site.

7.2.1 The simplest query

The simplest query retrieves all instances of a particular persistent class. In HQL, it
looks like this:

from Bid

Using a criteria query, it looks like this:

session.createCriteria(Bid.class);

Both these queries generate the following SQL:

select B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED from BID B

Even for this simple case, you can see that HQL is less verbose than SQL.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic queries for objects 251

7.2.2 Using aliases

Usually, when you query a class using HQL, you need to assign an alias to the que-
ried class to use as reference in other parts of the query:

from Bid as bid

The as keyword is always optional. The following is equivalent:

from Bid bid

Think of this as being a bit like the temporary variable declaration in the following
Java code:

for (Iterator i = allQueriedBids.iterator(); i.hasNext();) {
 Bid bid = (Bid) i.next();
 ...
}

We assign the alias bid to queried instances of the Bid class, allowing us to refer to
their property values later in the code (or query). To remind yourself of the simi-
larity, we recommend that you use the same naming convention for aliases that you
use for temporary variables (camelCase, usually). However, we use shorter aliases
in some of the examples in this book (for example, i instead of item) to keep the
printed code readable.

NOTE We never write HQL keywords in uppercase; we never write SQL keywords
in uppercase either. It looks ugly and antiquated—most modern termi-
nals can display both uppercase and lowercase characters. However,
HQL isn’t case-sensitive for keywords, so you can write FROM Bid AS bid if
you like shouting.

By contrast, a criteria query defines an implicit alias. The root entity in a criteria
query is always assigned the alias this. We discuss this topic in more detail later,
when we’re joining associations with criteria queries. You don’t have to think much
about aliases when using the Criteria API.

7.2.3 Polymorphic queries

 We described HQL as an object-oriented query language, so it should support poly-
morphic queries—that is, queries for instances of a class and all instances of its
subclasses, respectively. You already know enough HQL that we can demonstrate
this. Consider the following query:

from BillingDetails
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

252 CHAPTER 7

Retrieving objects efficiently

This query returns objects of the type BillingDetails, which is an abstract class.
So, in this case, the concrete objects are of the subtypes of BillingDetails: Cred-
itCard and BankAccount. If we only want instances of a particular subclass, we
may use

from CreditCard

The class named in the from clause doesn’t need to be a mapped persistent class;
any class will do. The following query returns all persistent objects:

from java.lang.Object

Of course, this also works for interfaces—this query returns all serializable persis-
tent objects:

from java.io.Serializable

Criteria queries also support polymorphism:

session.createCriteria(BillingDetails.class).list();

This query returns instances of BillingDetails and its subclasses. Likewise, the fol-
lowing criteria query returns all persistent objects:

session.createCriteria(java.lang.Object.class).list();

Polymorphism applies not only to classes named explicitly in the from clause, but
also to polymorphic associations, as you’ll see later.

We’ve discussed the from clause; now let’s move on to the other parts of HQL.

7.2.4 Restriction

Usually, you don’t want to retrieve all instances of a class. You must be able to
express constraints on the property values of objects returned by the query. Doing
so is called restriction. The where clause is used to express a restriction in both SQL
and HQL; these expressions may be of arbitrary complexity. Let’s start simple,
using HQL:

from User u where u.email = 'foo@hibernate.org'

Notice that the constraint is expressed in terms of a property, email, of the User
class, and that we use an object-oriented notion: Just as in Java, u.email may not be
abbreviated to plain email.

For a criteria query, we must construct a Criterion object to express the con-
straint. The Expression class provides factory methods for built-in Criterion types.

Let’s create the same query using criteria and immediately execute it:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic queries for objects 253

Criterion emailEq = Expression.eq("email", "foo@hibernate.org");
Criteria crit = session.createCriteria(User.class);
crit.add(emailEq);
User user = (User) crit.uniqueResult();

We create a Criterion holding the simple Expression for an equality comparison
and add it to the Criteria. The uniqueResult() method executes the query and
returns exactly one object as a result.

Usually, we would write this a bit less verbosely, using method chaining:

User user = (User) session.createCriteria(User.class)
 .add(Expression.eq("email", "foo@hibernate.org"))
 .uniqueResult();

A new feature of JDK 1.5 is static imports. Hibernate has some use cases for static
imports, so we’re looking forward to the new version. For example, by adding

static import net.sf.hibernate.Expression.*;

we’ll be able to abbreviate the criteria query restriction code to

User user = (User) session.createCriteria(User.class)
 .add(eq("email", "foo@hibernate.org"))
 .uniqueResult();

The SQL generated by these queries is

select U.USER_ID, U.FIRSTNAME, U.LASTNAME, U.USERNAME, U.EMAIL
from USER U
where U.EMAIL = 'foo@hibernate.org'

You can of course use various other comparison operators in HQL.

7.2.5 Comparison operators

A restriction is expressed using ternary logic. The where clause is a logical expres-
sion that evaluates to true, false, or null for each tuple of objects. You construct log-
ical expressions by comparing properties of objects to other properties or literal
values using HQL’s built-in comparison operators.

FAQ What is ternary logic? A row is included in an SQL result set if and only if
the where clause evaluates to true. In Java, notNullObject==null evaluates
to false and null==null evaluates to true. In SQL, NOT_NULL_COLUMN=null
and null=null both evaluate to null, not true. Thus, SQL needs a special
operator, IS NULL, to test whether a value is null. This ternary logic is a way
of handling expressions that may be applied to null column values. It is a
(debatable) SQL extension to the familiar binary logic of the relational

model and of typical programming languages such as Java.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

254 CHAPTER 7

Retrieving objects efficiently

HQL supports the same basic operators as SQL: =, <>, <, >, >=, <=, between, not
between, in, and not in. For example:

from Bid bid where bid.amount between 1 and 10

from Bid bid where bid.amount > 100

from User u where u.email in ("foo@hibernate.org", "bar@hibernate.org")

In the case of criteria queries, all the same operators are available via the Expres-
sion class:

session.createCriteria(Bid.class)
 .add(Expression.between("amount",
 new BigDecimal(1),
 new BigDecimal(10))
).list();

session.createCriteria(Bid.class)
 .add(Expression.gt("amount", new BigDecimal(100)))
 .list();

String[] emails = { "foo@hibernate.org", "bar@hibernate.org" };
session.createCriteria(User.class)
 .add(Expression.in("email", emails))
 .list();

Because the underlying database implements ternary logic, testing for null values
requires some care. Remember that null = null doesn’t evaluate to true in the
database, but to null. All comparisons that use the null operator in fact evaluate to
null. Both HQL and the Criteria API provide an SQL-style is null operator:

from User u where u.email is null

This query returns all users with no email address. The same semantic is available
in the Criteria API:

session.createCriteria(User.class)
 .add(Expression.isNull("email"))
 .list();

We also need to be able to find users who do have an email address:

from User u where u.email is not null

session.createCriteria(User.class)
 .add(Expression.isNotNull("email"))
 .list();

Finally, the HQL where clause supports arithmetic expressions (but the Criteria

API doesn’t):

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic queries for objects 255

from Bid bid where (bid.amount / 0.71) - 100.0 > 0.0

For string-based searches, you need to be able to perform case-insensitive match-
ing and matches on fragments of strings in restriction expressions.

7.2.6 String matching

The like operator allows wildcard searches, where the wildcard symbols are % and
_, just as in SQL:

from User u where u.firstname like "G%"

This expression restricts the result to users with a first name starting with a capi-
tal G. You can also negate the like operator, for example using a substring
match expression:

from User u where u.firstname not like "%Foo B%"

For criteria queries, wildcard searches may use either the same wildcard symbols or
specify a MatchMode. Hibernate provides the MatchMode as part of the Criteria
query API; we use it for writing string match expressions without string manipula-
tion. These two queries are equivalent:

session.createCriteria(User.class)
 .add(Expression.like("firstname", "G%"))
 .list();

session.createCriteria(User.class)
 .add(Expression.like("firstname", "G", MatchMode.START))
 .list();

The allowed MatchModes are START, END, ANYWHERE, and EXACT.
An extremely powerful feature of HQL is the ability to call arbitrary SQL func-

tions in the where clause. If your database supports user-defined functions (most
do), you can put this functionality to all sorts of uses, good or evil. For the moment,
let’s consider the usefulness of the standard ANSI SQL functions upper() and
lower(). They can be used for case-insensitive searching:

from User u where lower(u.email) = 'foo@hibernate.org'

The Criteria API doesn’t currently support SQL function calls. It does, however,
provide a special facility for case-insensitive searching:

session.createCriteria(User.class)
 .add(Expression.eq("email", "foo@hibernate.org").ignoreCase())
 .list();
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

256 CHAPTER 7

Retrieving objects efficiently

Unfortunately, HQL doesn’t provide a standard string-concatenation operator;
instead, it supports whatever syntax your database provides. Most databases will
allow the following:

from User user
 where (user.firstname || ' ' || user.lastname) like 'G% K%'

We’ll return to some more exotic features of the HQL where clause later in this
chapter. We only used single expressions for restrictions in this section; let’s com-
bine several with logical operators.

7.2.7 Logical operators

Logical operators (and parentheses for grouping) are used to combine expressions:

from User user
 where user.firstname like "G%" and user.lastname like "K%"

from User user
 where (user.firstname like "G%" and user.lastname like "K%")
 or user.email in ("foo@hibernate.org", "bar@hibernate.org")

If you add multiple Criterion instances to the one Criteria instance, they’re
applied conjunctively (that is, using and):

session.createCriteria(User.class)
 .add(Expression.like("firstname", "G%"))
 .add(Expression.like("lastname", "K%"))

If you need disjunction (or), you have two options. The first is to use Expres-
sion.or() together with Expression.and():

Criteria crit = session.createCriteria(User.class)
 .add(
 Expression.or(
 Expression.and(
 Expression.like("firstname", "G%"),
 Expression.like("lastname", "K%")
),
 Expression.in("email", emails)
)
);

The second option is to use Expression.disjunction() together with Expres-
sion.conjunction():

Criteria crit = session.createCriteria(User.class)
 .add(Expression.disjunction()

 .add(Expression.conjunction()

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Basic queries for objects 257

 .add(Expression.like("firstname", "G%"))
 .add(Expression.like("lastname", "K%"))
)
 .add(Expression.in("email", emails))
);

We think both options are ugly, even after spending five minutes trying to format
them for maximum readability. JDK 1.5 static imports would help improve readabil-
ity considerably; but even so, unless you’re constructing a query on the fly, the HQL
string is much easier to understand. Complex criteria queries are useful only when
they’re created programmatically; for example, in the case of a complex search
screen with several optional search criteria, we might have a CriteriaBuilder that
translates user restrictions to Criteria instances.

7.2.8 Ordering query results

All query languages provide a mechanism for ordering query results. HQL provides
an order by clause, similar to SQL.

This query returns all users, ordered by username:

from User u order by u.username

You specify ascending and descending order using asc or desc:

from User u order by u.username desc

Finally, you can order by multiple properties:

from User u order by u.lastname asc, u.firstname asc

The Criteria API provides a similar facility:

List results = session.createCriteria(User.class)
 .addOrder(Order.asc("lastname"))
 .addOrder(Order.asc("firstname"))
 .list();

Thus far, we’ve only discussed the basic concepts of HQL and criteria queries.
You’ve learned how to write a simple from clause and use aliases for classes. We’ve
combined various restriction expressions with logical operators. However, we’ve
focused on single persistent classes—that is, we’ve only referenced a single class in
the from clause. An important query technique we haven’t discussed yet is the join-
ing of associations at runtime.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

258 CHAPTER 7

Retrieving objects efficiently

7.3 Joining associations

You use a join to combine data in two (or more) relations. For example, we might
join the data in the ITEM and BID tables, as shown in figure 7.1. (Note that not all
columns and possible rows are shown; hence the dotted lines.)

What most people think of when they hear the word join in the context of SQL
databases is an inner join. An inner join is one of several types of joins, and it’s the
easiest to understand. Consider the SQL statement and result in figure 7.2. This
SQL statement is an ANSI-style join.

If we join tables ITEM and BID with an inner join, using their common attributes
(the ITEM_ID column), we get all items and their bids in a new result table. Note
that the result of this operation contains only items that have bids. If we want all
items, and null values instead of bid data when there is no corresponding bid, we
use a (left) outer join, as shown in figure 7.3.

You can think of a table join as working as follows. First, you get a Cartesian prod-
uct of the two tables by taking all possible combinations of ITEM rows with BID rows.
Second, you filter these joined rows using a join condition. Note that the database
has much more sophisticated algorithms to evaluate a join; it usually doesn’t build
a memory-consuming product and then filter all rows. The join condition is just a
boolean expression that evaluates to true if the joined row is to be included in the
result. In the case of the left outer join, each row in the (left) ITEM table that never

ITEM_ID NAME

1
2

Foo
Bar ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

INITIAL_PRICE

2.00
50.00

10.00
20.00
55.50

3 Baz 1.00

ITEM

BID

Figure 7.1
The ITEM and BID
tables are obvious
candidates for a join
operation.

ITEM_ID NAME

1

2

Foo

Bar

ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

from ITEM I inner join BID B on I.ITEM_ID = B.ITEM_ID

INITIAL_PRICE

2.00

50.00

10.00
20.00
55.50

1 Foo 2.00
Figure 7.2
The result table of an
ANSI-style inner join of

two tables

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Joining associations 259

satisfies the join condition is also included in the result, with null values returned
for all columns of BID. (A right outer join would retrieve all bids and null if a bid
has no item—certainly not a sensible query in our situation.)

In SQL, the join condition is usually specified explicitly. (Unfortunately, it isn’t
possible to use the name of a foreign key constraint to specify how two tables are
to be joined.) We specify the join condition in the on clause for an ANSI-style join
or in the where clause for a so-called theta-style join, where I.ITEM_ID = B.ITEM_ID.

7.3.1 Hibernate join options

In Hibernate queries, you don’t usually specify a join condition explicitly. Rather,
you specify the name of a mapped Java class association. For example, the Item
class has an association named bids with the Bid class. If we name this association
in our query, Hibernate has enough information in the mapping document to
then deduce the table join expression. This helps make queries less verbose and
more readable.

HQL provides four ways of expressing (inner and outer) joins:

■ An ordinary join in the from clause

■ A fetch join in the from clause

■ A theta-style join in the where clause

■ An implicit association join

Later, we’ll show you how to write a join between two classes that don’t have an asso-
ciation defined (a theta-style join) and also how to write an implicit association join
in the where or select (or group by, or order by, or having) clause. But often, a
from clause join, either ordinary or fetch, is the clearest syntax—so we’ll discuss
these two options first. Remember that the semantics of HQL joins are close to SQL
join operations but not necessarily the same.

ITEM_ID NAME

1

2
3

Foo

Bar
Baz

ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

from ITEM I left outer join BID B on I.ITEM_ID = B.ITEM_ID

INITIAL_PRICE

2.00

50.00
1.00

10.00
20.00
55.50

1 Foo 2.00

null null null

Figure 7.3
The result of an ANSI-
style left outer join of
two tables
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

260 CHAPTER 7

Retrieving objects efficiently

Hibernate differentiates between the purposes for joining. Suppose we’re que-
rying Items. There are two possible reasons why we might be interested in joining
the Bids.

We might want to limit the Items returned by the query on the basis of some cri-
terion that should be applied to their Bids. For example, you might want all Items
that have a bid of more than $100; hence this requires an inner join.

On the other hand, we may be primarily interested in the Items and not want
the retrieved items and their bids loaded at the same time (the bids collection
shouldn’t be initialized). The Items are retrieved first, and Hibernate lazily loads
all Bids with an additional select once we access the collection by calling, for exam-
ple, item.getBids().iterator().

Alternatively, we may want to execute an outer join to retrieve all the Bids for the
queried Items in the same single select, something we called eager fetching earlier.
Remember that we prefer to map all associations lazy by default, so an eager, outer-
join fetch query is used to override the default fetching strategy at runtime.

Let’s discuss this last case first.

7.3.2 Fetching associations

In HQL, you can specify that an association should be eagerly fetched by an
outer join using the fetch keyword in the from clause:

from Item item
left join fetch item.bids
 where item.description like '%gc%'

This query returns all items with a description that contains the string gc, and all
their bids, in a single select. When executed, it returns a list of Item instances, with
their bids collections fully initialized. We call this a from clause fetch join. The pur-
pose of a fetch join is performance optimization: We use this syntax only because
we want eager initialization of the bids collections in a single SQL select.

We can do the same thing using the Criteria API:

session.createCriteria(Item.class)
 .setFetchMode("bids", FetchMode.EAGER)
 .add(Expression.like("description", "gc", MatchMode.ANYWHERE))
 .list();

Both of these queries result in the following SQL:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID, B.BID_ID,
B.AMOUNT, B.ITEM_ID, B.CREATED
from ITEM I

left outer join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%gc%'

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Joining associations 261

We can also prefetch many-to-one or one-to-one associations using the same syntax:

from Bid bid
left join fetch bid.item
left join fetch bid.bidder
 where bid.amount > 100

session.createCriteria(Bid.class)
 .setFetchMode("item", FetchMode.EAGER)
 .setFetchMode("bidder", FetchMode.EAGER)
 .add(Expression.gt("amount", new BigDecimal(100)))
 .list();

These queries execute the following SQL:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED,
U.USERNAME, U.PASSWORD, U.FIRSTNAME, U.LASTNAME
from BID B
left outer join ITEM I on I.ITEM_ID = B.ITEM_ID
left outer join USER U on U.USER_ID = B.BIDDER_ID
where B.AMOUNT > 100

Note that the left keyword is optional in HQL, so we could rewrite the previous
examples using join fetch. Although this looks straightforward to use, there are a
couple of things to consider and remember:

■ HQL always ignores the mapping document eager fetch (outer join) setting. If
you’ve mapped some associations to be fetched by outer join (by setting
outer-join="true" on the association mapping), any HQL query will ignore
this preference. You must use an explicit fetch join if you want eager fetch-
ing in HQL. On the other hand, the criteria query will not ignore the map-
ping! If you specify outer-join="true" in the mapping file, the criteria
query will fetch that association by outer join—just like Session.get() or
Session.load() for retrieval by identifier. For a criteria query, you can
explicitly disable outer join fetching by calling setFetchMode("bids",
FetchMode.LAZY). HQL is designed to be as flexible as possible: You can
completely (re)define the fetching strategy that should be used at runtime.

■ Hibernate currently limits you to fetching just one collection eagerly. This is a rea-
sonable restriction, since fetching more than one collection in a single
query would be a Cartesian product result. This restriction might be relaxed
in a future version of Hibernate, but we encourage you to think about the
size of the result set if more than one collection is fetched in an outer join.
The amount of data that would have to be transported between database

and application can easily grow into the megabyte range, and most of it

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

262 CHAPTER 7

Retrieving objects efficiently

would be thrown away immediately (Hibernate flattens the tabular result set
to build the object graph). You may fetch as many one-to-one or many-to-
one associations as you like.

■ If you fetch a collection, Hibernate doesn’t return a distinct result list. For exam-
ple, an individual Item might appear several times in the result List, if you
outer-join fetch the bids. You’ll probably need to make the results distinct
yourself using, for example: distinctResults = new HashSet(resultList);.
A Set doesn’t allow duplicate elements.

This is how Hibernate implements what we call runtime association fetching strategies,
a powerful feature that is essential for achieving high performance in ORM. Let’s
continue with the other join operations.

7.3.3 Using aliases with joins

We’ve already discussed the role of the where clause in expressing restriction.
Often, you’ll need to apply restriction criteria to multiple associated classes (joined
tables). If we want to do this using an HQL from clause join, we need to assign an
alias to the joined class:

from Item item
join item.bids bid
 where item.description like '%gc%'
 and bid.amount > 100

This query assigns the alias item to the class Item and the alias bid to the joined
Item’s bids. We then use both aliases to express our restriction criteria in the
where clause.

The resulting SQL is as follows:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
B.BID_ID, B.AMOUNT, B.ITEM_ID, B.CREATED
from ITEM I
inner join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%gc%'
and B.AMOUNT > 100

The query returns all combinations of associated Bids and Items. But unlike a fetch
join, the bids collection of the Item isn’t initialized by the query! So what do we
mean by a combination here? We mean an ordered pair: (bid, item). In the query
result, Hibernate represents an ordered pair as an array. Let’s discuss a full code
example with the result of such a query:
Query q = session.createQuery("from Item item join item.bids bid");
Iterator pairs = q.list().iterator();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Joining associations 263

while (pairs.hasNext()) {
 Object[] pair = (Object[]) pairs.next();
 Item item = (Item) pair[0];
 Bid bid = (Bid) pair[1];
}

Instead of a List of Items, this query returns a List of Object[] arrays. At index 0
is the Item, and at index 1 is the Bid. A particular Item may appear multiple times,
once for each associated Bid.

This is all different from the case of a query with an eager fetch join. The query
with the fetch join returned a List of Items, with initialized bids collections.

If we don’t want the Bids in the query result, we can specify a select clause in
HQL. This clause is optional (it isn’t in SQL), so we only have to use it when we
aren’t satisfied with the result returned by default. We use the alias in a select
clause to retrieve only the selected objects:

select item
from Item item
join item.bids bid
 where item.description like '%gc%'
 and bid.amount > 100

Now the generated SQL looks like this:

select I.DESCRIPTION, I.CREATED, I.SUCCESSFUL_BID,
from ITEM I
inner join BID B on I.ITEM_ID = B.ITEM_ID
where I.DESCRIPTION like '%gc%'
and B.AMOUNT > 100

The query result contains just Items, and because it’s an inner join, only Items that
have Bids:

Query q = session.createQuery("select i from Item i join i.bids b");
Iterator items = q.list().iterator();
while (items.hasNext()) {
 Item item = (Item) items.next();
}

As you can see, using aliases in HQL is the same for both direct classes and joined
associations. We assign aliases in the from clause and use them in the where and in
the optional select clause. The select clause in HQL is much more powerful; we
discuss it in detail later in this chapter.

There are two ways to express a join in the Criteria API; hence there are two
ways to use aliases for restriction. The first is the createCriteria() method of the

Criteria interface. It means that you can nest calls to createCriteria():

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

264 CHAPTER 7

Retrieving objects efficiently

Criteria itemCriteria = session.createCriteria(Item.class);
itemCriteria.add(Expression.like("description",
 "gc",
 MatchMode.ANYWHERE));
Criteria bidCriteria = itemCriteria.createCriteria("bids");
bidCriteria.add(Expression.gt("amount", new BigDecimal("100")));

List results = itemCriteria.list();

We’d usually write the query as follows (method chaining):

List results =
 session.createCriteria(Item.class)
 .add(Expression.like("description", "gc", MatchMode.ANYWHERE))
 .createCriteria("bids")
 .add(Expression.gt("amount", new BigDecimal("100")))
 .list();

The creation of a Criteria for the bids of the Item results in an inner join between
the tables of the two classes. Note that we may call list() on either Criteria
instance without changing the query results.

The second way to express this query using the Criteria API is to assign an alias
to the joined entity:

List results =
 session.createCriteria(Item.class)
 .createAlias("bids", "bid")
 .add(Expression.like("description", "%gc%"))
 .add(Expression.gt("bid.amount", new BigDeciml("100")))
 .list();

This approach doesn’t use a second instance of Criteria. So, properties of the
joined entity must be qualified by the alias assigned in createAlias(). Properties
of the root entity (Item) may be referred to without the qualifying alias or by using
the alias "this". Thus the following is equivalent:

List results =
 session.createCriteria(Item.class)
 .createAlias("bids", "bid")
 .add(Expression.like("this.description", "%gc%"))
 .add(Expression.gt("bid.amount", new BigDecimal("100")))
 .list();

By default, a criteria query returns only the root entity—in this case, the Items—in
the query result. Let’s summarize with a full example:

Iterator items =
 session.createCriteria(Item.class)

 .createAlias("bids", "bid")
 .add(Expression.like("this.description", "%gc%"))

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Joining associations 265

 .add(Expression.gt("bid.amount", new BigDecimal("100")))
 .list().iterator();

while (items.hasNext()) {
 Item item = (Item) items.next();
 // Do something
}

Keep in mind that the bids collection of each Item isn’t initialized. A limitation of
criteria queries is that you can’t combine a createAlias with an eager fetch mode;
for example, setFetchMode("bids", FetchMode.EAGER) isn’t valid.

If we want to return both the matching Items and Bids, we must ask Hibernate
to return each row of results as a Map:

Iterator itemBidMaps =
 session.createCriteria(Item.class)
 .createAlias("bids", "bid")
 .add(Expression.like("this.description", "%gc%"))
 .add(Expression.gt("bid.amount", new BigDecimal("100")))
 .returnMaps()
 .list().iterator();

while (itemBidMaps.hasNext()) {
 Map map = (Map) itemBidMaps.next();
 Item item = (Item) map.get("this");
 Bid bid = (Bid) map.get("bid");
 // Do something
}

This is a second difference between the default behaviors of HQL and criteria que-
ries: by default, HQL queries return all queried entities if we don’t select explicitly.

Sometimes you’d like a less verbose way to express a join. In Hibernate, you can
use an implicit association join.

7.3.4 Using implicit joins

So far, we’ve used simple qualified property names like bid.amount and
item.description in our HQL queries. HQL supports multipart property path
expressions for two purposes:

■ Querying components

■ Expressing implicit association joins

The first use is straightforward:

from User u where u.address.city = 'Bangkok'
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

266 CHAPTER 7

Retrieving objects efficiently

We express the parts of the mapped component Address with dot notation. This
usage is also supported by the Criteria API:

session.createCriteria(User.class)
 .add(Expression.eq("address.city", "Bangkok"));

The second usage, implicit association joining, is available only in HQL. For example:

from Bid bid where bid.item.description like '%gc%'

This results in an implicit join on the many-to-one associations from Bid to Item.
Implicit joins are always directed along many-to-one or one-to-one associations,
never through a collection-valued association (you can’t write item.bids.amount).

Multiple joins are possible in a single property path expression. If the associa-
tion from Item to Category would be many-to-one (instead of the current many-to-
many), we could write

from Bid bid where bid.item.category.name like 'Laptop%'

We frown on the use of this syntactic sugar for more complex queries. Joins are
important, and especially when optimizing queries, you need to be able to see at a
glance how many of them there are. Consider the following query (again, using a
many-to-one from Item to Category):

from Bid bid
 where bid.item.category.name like 'Laptop%'
 and bid.item.successfulBid.amount > 100

How many joins are required to express this in SQL? Even if you get the answer
right, we bet it takes you more than a few seconds. The answer is three; the gener-
ated SQL looks something like this:

select ...
from BID B
inner join ITEM I on B.ITEM_ID = I.ITEM_ID
inner join CATEGORY C on I.CATEGORY_ID = C.CATEGORY_ID
inner join BID SB on I.SUCCESSFUL_BID_ID = SB.BID_ID
where C.NAME like 'Laptop%'
and SB.AMOUNT > 100

It’s more obvious if we express the same query like this:

from Bid bid
join bid.item item
 where item.category.name like 'Laptop%'
 and item.successfulBid.amount > 100

We can even be more verbose:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Joining associations 267

from Bid as bid
join bid.item as item
join item.category as cat
join item.successfulBid as winningBid
 where cat.name like 'Laptop%'
 and winningBid.amount > 100

Let’s continue with join conditions using arbitrary attributes, expressed in theta-style.

7.3.5 Theta-style joins

A Cartesian product allows you to retrieve all possible combinations of instances
of two or more classes. This query returns all ordered pairs of Users and Cate-
gory objects:

from User, Category

Obviously, this generally isn’t useful. There is one case where it’s commonly used:
theta-style joins.

In traditional SQL, a theta-style join is a Cartesian product, together with a join
condition in the where clause, which is applied on the product to restrict the result.

In HQL, the theta-style syntax is useful when your join condition isn’t a foreign
key relationship mapped to a class association. For example, suppose we store the
User’s name in log records instead of mapping an association from LogRecord to
User. The classes don’t “know” anything about each other, because they aren’t asso-
ciated. We can then find all the Users and their LogRecords with the following theta-
style join:

from User user, LogRecord log where user.username = log.username

The join condition here is the username, presented as an attribute in both classes.
If both entities have the same username, they’re joined (with an inner join) in the
result. The query result consists of ordered pairs:

Iterator i = session.createQuery(
 "from User user, LogRecord log " +
 "where user.username = log.username"
)
 .list().iterator();

while (i.hasNext()) {
 Object[] pair = (Object[]) i.next();
 User user = (User) pair[0];
 LogRecord log = (LogRecord) pair[1];
}

We can change the result by adding a select clause.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

268 CHAPTER 7

Retrieving objects efficiently

You probably won’t need to use theta-style joins often. Note that the Criteria
API doesn’t provide any means for expressing Cartesian products or theta-style
joins. It’s also currently not possible in Hibernate to outer-join two tables that don’t
have a mapped association.

7.3.6 Comparing identifiers

It’s extremely common to perform queries that compare primary key or foreign
key values to either query parameters or other primary or foreign key values. If you
think about this in more object-oriented terms, what you’re doing is comparing
object references. HQL supports the following:

from Item i, User u
 where i.seller = u and u.username = 'steve'

In this query, i.seller refers to the foreign key to the USER table in the ITEM table
(on the SELLER_ID column), and user refers to the primary key of the USER table
(on the USER_ID column). This query uses a theta-style join and is equivalent to the
much preferred ANSI style:

from Item i join i.seller u
 where u.username = 'steve'

On the other hand, the following theta-style join cannot be re-expressed as a from
clause join:

from Item i, Bid b
where i.seller = b.bidder

In this case, i.seller and b.bidder are both foreign keys of the USER table. Note
that this is an important query in our application; we use it to identify people bid-
ding for their own items.

We might also like to compare a foreign key value to a query parameter—for
example, to find all Comments from a User:

User user = ...
Query q =
 session.createQuery("from Comment c where c.fromUser = :user");
q.setEntity("user", givenUser);
List result = q.list();

Alternatively, sometimes we’d prefer to express these kinds of queries in terms of
identifier values rather than object references. You can refer to an identifier value
by either the name of the identifier property (if there is one) or the special

property name id. Every persistent entity class has this special HQL property, even

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Writing report queries 269

if you don’t implement an identifier property on the class (see chapter 3,
section 3.4.2, “Database identity with Hibernate”).

These queries are exactly equivalent to the previous queries:

from Item i, User u
 where i.seller.id = u.id and u.username = 'steve'
from Item i, Bid b
 where i.seller.id = b.bidder.id

However, we can now use the identifier value as a query parameter:

Long userId = ...
Query q =
 session.createQuery("from Comment c where c.fromUser.id = :id");

q.setLong("id", userId);
List result = q.list();

You might have noticed that there is a world of difference between the follow-
ing queries:

from Bid b where b.item.id = 1

from Bid b where b.item.description like '%gc'

The second query uses an implicit table join; the first has no joins at all.
We’ve now covered most of the features of Hibernate’s query facilities that are

commonly needed for retrieving objects for manipulation in business logic. In the
next section, we’ll change our focus and discuss features of HQL that are used
mainly for analysis and reporting functionality.

7.4 Writing report queries

Reporting queries take advantage of the database’s ability to perform efficient
grouping and aggregation of data.

They’re more relational in nature; they don’t always return entities. For exam-
ple, instead of retrieving Item entities that are transactional (and automatically
dirty-checked), a report query might only retrieve the Item names and initial auc-
tion prices. If this is the only information we need (maybe even aggregated—the
highest initial price in a category, and so on) for a report screen, we don’t need
transactional entities and can save the (albeit small) overhead of automatic dirty-
checking and caching in the Session.

We won’t talk about the Criteria API in this section, because it hasn’t (yet) been
adapted for reporting queries.
Let’s consider the structure of an HQL query again.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

270 CHAPTER 7

Retrieving objects efficiently

The only required clause of an HQL query is the from clause. All other clauses
are optional. The full structure of HQL is given by the following form:

[select ...] from ... [where ...]
 [group by ... [having ...]] [order by ...]

So far, we’ve discussed the from, where, and order by clauses. We used the select
clause to declare which entities should be returned in a join query.

In reporting queries, you use the select clause for projection and the group by
and having clauses for aggregation.

7.4.1 Projection

The select clause performs projection. It lets you specify which objects or proper-
ties of objects you need in the query result. For example, as you’ve already seen,
the following query returns ordered pairs of Items and Bids:

from Item item join item.bids bid where bid.amount > 100

If we only need to use the Items in our unit of work, we should use this query instead:

select item from Item item join item.bids bid where bid.amount > 100

Or, if we were just displaying a list screen to the user, it might be enough to retrieve
only the properties we have to display:

select item.id, item.description, bid.amount
 from Item item join item.bids bid
 where bid.amount > 100

This query returns each row of results as an Object[] array of length 3. It’s a report
query; all objects in the result aren’t Hibernate entities and aren’t transactional.
We use them in a read-only procedure. Let’s execute it:

Iterator i = session.createQuery(
 "select item.id, item.description, bid.amount " +
 "from Item item join item.bids bid " +
 "where bid.amount > 100"
)
.list()
.iterator();

while (i.hasNext()) {
 Object[] row = (Object[]) i.next();

 Long id = (Long) row[0];
 String description = (String) row[1];
 BigDecimal amount = (BigDecimal) row[2];

 // ... show values in a report screen

}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Writing report queries 271

Using dynamic instantiation
Since the previous example was verbose and not very object-oriented (working
with a tabular data representation in arrays), we can define a class to represent
each row of results and use the HQL select new construct:

select new ItemRow(item.id, item.description, bid.amount)
 from Item item join item.bids bid
 where bid.amount > 100

Assuming that the ItemRow class has an appropriate constructor (you have to write
that class), this query returns newly instantiated (transient) instances of ItemRow,
as you can see in the next example:

Iterator i = session.createQuery(
 "select new ItemRow(item.id, item.description, bid.amount) " +
 "from Item item join item.bids bid " +
 "where bid.amount > 100"
)
.list()
.iterator();

while (i.hasNext()) {
 ItemRow row = (ItemRow) i.next();
 // Do something
}

The custom ItemRow class doesn’t have to be a persistent class; it doesn’t have to be
mapped to the database or even be known to Hibernate. ItemRow is therefore only
a data-transfer class, useful in report generation.

Getting distinct results
When you use a select clause, the elements of the result are no longer guaranteed
to be unique. For example, Items descriptions aren’t unique, so the following
query might return the same description more than once:

select item.description from Item item

It’s difficult to see how it could possibly be meaningful to have two identical rows
in a query result, so if you think duplicates are likely, you should use the dis-
tinct keyword:

select distinct item.description from Item item

This eliminates duplicates from the returned list of Item descriptions.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

272 CHAPTER 7

Retrieving objects efficiently

Calling SQL functions
It’s also possible (for some Hibernate SQL dialects) to call database-specific SQL
functions from the select clause (remember, you can freely do it in the where
clause). For example, the following query retrieves the current date and time from
the database server (Oracle syntax), together with a property of Item:

select item.startDate, sysdate from Item item

The technique of database functions in the select clause is of course not limited
to database-dependent functions, but to other, more generic (or standardized)
SQL functions as well:

select item.startDate, item.endDate, upper(item.name)
 from Item item

This query returns an Object[] with the starting and ending date of an item auc-
tion, and the name of the item all in uppercase.

In particular, it’s possible to call SQL aggregate functions.

7.4.2 Using aggregation

Hibernate recognizes the following aggregate functions: count(), min(), max(),
sum(), and avg().

This query counts all the Items:

select count(*) from Item

The result is returned as an Integer:

Integer count =
 (Integer) session.createQuery("select count(*) from Item")
 .uniqueResult();

Notice how we use *, which has the same semantics as in SQL.
The next variation of the query counts all Items that have a successfulBid:

select count(item.successfulBid) from Item item

This query calculates the total of all the successful Bids:

select sum(item.successfulBid.amount) from Item item

The query returns a BigDecimal. Notice the use of an implicit join in the select
clause: We navigate the association (successfulBid) from Item to Bid by referenc-
ing it with a dot.

The next query returns the minimum and maximum bid amounts for a particu-

lar Item:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Writing report queries 273

select min(bid.amount), max(bid.amount)
 from Bid bid where bid.item.id = 1

The result is an ordered pair of BigDecimals (two instances of BigDecimal in an
Object[] array).

The special count(distinct) function ignores duplicates:

select count(distinct item.description) from Item item

When you call an aggregate function in the select clause without specifying any
grouping in a group by clause, you collapse the result down to a single row contain-
ing your aggregated value(s). This means (in the absence of a group by clause) any
select clause that contains an aggregate function must contain only aggregate
functions.

So, for more advanced statistics and reporting, you’ll need to be able to per-
form grouping.

7.4.3 Grouping

Just like in SQL, any property or alias that appears in HQL outside of an aggregate
function in the select clause must also appear in the group by clause.

Consider the next query, which counts the number of users with each particular
last name:

select u.lastname, count(u) from User u
 group by u.lastname

Now look at the generated SQL:

select U.LAST_NAME, count(U.USER_ID)
 from USER U
 group by U.LAST_NAME

In this example, the u.lastname isn’t inside an aggregate function; we use it to
group the result. We also don’t need to specify the property we’d like to count in
HQL. The generated SQL will automatically use the primary key if we use an alias
that has been set in the from clause.

The next query finds the average bid amount for each item:

select bid.item.id, avg(bid.amount) from Bid bid
group by bid.item.id

This query returns ordered pairs of Item identifiers and average bid amount.
Notice how we use the id special property to refer to the identifier of a persistent
class no matter what the identifier’s real property name is.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

274 CHAPTER 7

Retrieving objects efficiently

The next query counts the number of bids and calculates the average bid per
unsold item:

select bid.item.id, count(bid), avg(bid.amount)
 from Bid bid
 where bid.item.successfulBid is null
 group by bid.item.id

This query uses an implicit association join. For an explicit ordinary join in the
from clause (not a fetch join), we can re-express it as follows:

select bidItem.id, count(bid), avg(bid.amount)
 from Bid bid
 join bid.item bidItem
 where bidItem.successfulBid is null
 group by bidItem.id

To initialize the bids collection of the Items, we can use a fetch join and refer to
the associations starting on the other side:

select item.id, count(bid), avg(bid.amount)
 from Item item
 fetch join item.bids bid
 where item.successfulBid is null
 group by item.id

Sometimes, you’ll want to further restrict the result by selecting only particular val-
ues of a group.

7.4.4 Restricting groups with having

The where clause is used to perform the relational operation of restriction on rows.
The having clause performs restriction on groups.

For example, the next query counts users with each last name that begins with A:

select user.lastname, count(user)
 from User user
 group by user.lastname
 having user.lastname like 'A%'

The same rules govern the select and having clauses: Only grouped properties
may appear outside an aggregate function. The next query counts the number
of bids per unsold item, returning results for only those items that have more
than 10 bids:

select item.id, count(bid), avg(bid.amount)
 from Item item
 join item.bids bid
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Writing report queries 275

 where item.successfulBid is null
 group by item.id
 having count(bid) > 10

Most report queries use a select clause to choose a list of projected or aggregated
properties. You’ve seen that when more than one property or alias is listed in the
select clause, Hibernate returns the query results as tuples: Each row of the query
result list is an instance of Object[]. Tuples are inconvenient and non-typesafe, so
Hibernate provides the select new constructor as mentioned earlier. You can cre-
ate new objects dynamically with this technique and also use it in combination with
aggregation and grouping.

If we define a class called ItemBidSummary with a constructor that takes a Long, a
String, and an Integer, we can use the following query:

select new ItemBidSummary(bid.item.id, count(bid), avg(bid.amount))
 from Bid bid
 where bid.item.successfulBid is null
 group by bid.item.id

In the result of this query, each element is an instance of ItemBidSummary, which is
a summary of an Item, the number of bids for that item, and the average bid
amount. This approach is typesafe, and a data transfer class such as ItemBidSummary
can easily be extended for special formatted printing of values in reports.

7.4.5 Improving performance with report queries

Report queries can have an impact on the performance of your application. Let’s
explore this issue in more depth.

The only time we’ve seen any significant overhead in Hibernate code compared
to direct JDBC queries—and then only for unrealistically simple test cases—is in the
special case of read-only queries against a local database. It’s possible for a database
to completely cache query results in memory and respond quickly, so benchmarks
are generally useless if the dataset is small: Plain SQL and JDBC will always be the
fastest option.

On the other hand, even with a small dataset, Hibernate must still do the work
of adding the resulting objects of a query to the Session cache (perhaps also the
second-level cache) and manage uniqueness, and so on. Report queries give you a
way to avoid the overhead of managing the Session cache. The overhead of a
Hibernate report query compared to direct SQL/JDBC isn’t usually measurable,
even in unrealistic extreme cases like loading one million objects from a local data-
base without network latency.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

276 CHAPTER 7

Retrieving objects efficiently

Report queries using projection in HQL let you specify exactly which properties
you wish to retrieve. For report queries, you aren’t selecting entities, but only prop-
erties or aggregated values:

select user.lastname, count(user) from User user
 group by user.lastname

This query doesn’t return a persistent entity, so Hibernate doesn’t add a transac-
tional object to the Session cache. This also means that no object must be watched
for dirty state.

Reporting queries result in faster release of allocated memory, since objects
aren’t kept in the Session cache until the Session is closed—they may be gar-
bage-collected as soon as they’re dereferenced by the application, after executing
the report.

These considerations are almost always extremely minor, so don’t go out and
rewrite all your read-only transactions to use report queries instead of transac-
tional, cached, and monitored objects. Report queries are more verbose and (argu-
ably) less object-oriented. They also make less efficient use of Hibernate’s caches,
which is much more important once you consider the overhead of remote commu-
nication with the database in production systems. You should wait until you find an
actual case where you have a performance problem before using this optimization.

Let’s get back to regular entity queries. There are still many Hibernate features
waiting to be discovered.

7.5 Advanced query techniques

You’ll use advanced query techniques less frequently with Hibernate, but you
should know about them. In this section, we talk about programmatically building
criteria with example objects, a topic we briefly introduced earlier.

Filtering collections is also a handy technique: You can use the database instead
of filtering objects in memory. Subqueries and queries in native SQL will round out
your knowledge of Hibernate query techniques.

7.5.1 Dynamic queries

It’s common for queries to be built programmatically by combining several
optional query criteria depending on user input. For example, a system adminis-
trator may wish to search for users by any combination of first name or last name,
and to retrieve the result ordered by username. Using HQL, we could build the

query using string manipulations:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced query techniques 277

public List findUsers(String firstname,
 String lastname)
 throws HibernateException {

 StringBuffer queryString = new StringBuffer();
 boolean conditionFound = false;

 if (firstname != null) {
 queryString.append("lower(u.firstname) like :firstname ");
 conditionFound=true;
 }
 if (lastname != null) {
 if (conditionFound) queryString.append("and ");
 queryString.append("lower(u.lastname) like :lastname ");
 conditionFound=true;
 }

 String fromClause = conditionFound ?
 "from User u where " :
 "from User u ";

 queryString.insert(0, fromClause).append("order by u.username");

 Query query = getSession().createQuery(queryString.toString());

 if (firstname != null)
 query.setString("firstname",
 '%' + firstname.toLowerCase() + '%');
 if (lastname != null)
 query.setString("lastname",
 '%' + lastname.toLowerCase() + '%');

 return query.list();
}

This code is tedious and noisy, so let’s try a different approach. The Criteria API
looks promising:

public List findUsers(String firstname,
 String lastname)
 throws HibernateException {

 Criteria crit = getSession().createCriteria(User.class);

 if (firstname != null) {
 crit.add(Expression.ilike("firstname",
 firstname,
 MatchMode.ANYWHERE));
 }
 if (lastname != null) {
 crit.add(Expression.ilike("lastname",
 lastname,
 MatchMode.ANYWHERE));

 }

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

278 CHAPTER 7

Retrieving objects efficiently

 crit.addOrder(Order.asc("username"));

 return crit.list();
}

This code is much shorter. Note that the ilike() operator performs a case-insen-
sitive match. There seems no doubt that this is a better approach. However, for
search screens with many optional search criteria, there is an even better way.

First, observe that as we add new search criteria, the parameter list of findUs-
ers() grows. It would be better to capture the searchable properties as an
object. Since all the search properties belong to the User class, why not use an
instance of User.

QBE uses this idea. You provide an instance of the queried class with some prop-
erties initialized, and the query returns all persistent instances with matching prop-
erty values. Hibernate implements QBE as part of the Criteria query API:

public List findUsers(User u) throws HibernateException {

 Example exampleUser =
 Example.create(u).ignoreCase().enableLike(MatchMode.ANYWHERE);

 return getSession().createCriteria(User.class)
 .add(exampleUser)
 .list();
}

The call to create() returns a new instance of Example for the given instance of
User. The ignoreCase() method puts the example query into a case-insensitive
mode for all string-valued properties. The call to enableLike() specifies that the
SQL like operator should be used for all string-valued properties, and speci-
fies a MatchMode.

We’ve significantly simplified the code again. The nicest thing about Hibernate
Example queries is that an Example is just an ordinary Criterion. So, you can freely
mix and match QBE with QBC.

Let’s see how this works by further restricting the search results to users with
unsold Items. For this purpose, we add a Criteria to the example user, constrain-
ing the result using its items collection of Items:

public List findUsers(User u) throws HibernateException {

 Example exampleUser =
 Example.create(u).ignoreCase().enableLike(MatchMode.ANYWHERE);

 return getSession().createCriteria(User.class)
 .add(exampleUser)

 .createCriteria("items")

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced query techniques 279

 .add(Expression.isNull("successfulBid"))
 .list();
}

Even better, we can combine User properties and Item properties in the same
search:

public List findUsers(User u, Item i) throws HibernateException {

 Example exampleUser =
 Example.create(u).ignoreCase().enableLike(MatchMode.ANYWHERE);

 Example exampleItem =
 Example.create(i).ignoreCase().enableLike(MatchMode.ANYWHERE);

 return getSession().createCriteria(User.class)
 .add(exampleUser)
 .createCriteria("items")
 .add(exampleItem)
 .list();
}

At this point, we invite you to step back and consider how much code would be
required to implement this search screen using handcoded SQL/JDBC. We won’t
reproduce it here; it would stretch for pages.

7.5.2 Collection filters

You’ll commonly want to execute a query against all elements of a particular col-
lection. For instance, we might have an Item and wish to retrieve all bids for that
particular item, ordered by the time the bid was created. We already know one
good way to write this query:

List results =
 session.createQuery("from Bid b where b.item = :item " +
 "order by b.amount asc")
 .setEntity("item", item)
 .list();

This query works perfectly, since the association between bids and items is bidirec-
tional and each Bid knows its Item. Imagine that this association was unidirectional:
Item has a collection of Bids, but there is no inverse association from Bid to Item.

We could try the following query:

String query = "select bid from Item item join item.bids bid "
 + "where item = :item order by bid.amount asc";

List results = session.createQuery(query)
 .setEntity("item", item)

 .list();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

280 CHAPTER 7

Retrieving objects efficiently

This query is inefficient—it uses an unnecessary join. A better, more elegant solu-
tion is to use a collection filter: a special query that can be applied to a persistent
collection (or array). It’s commonly used to further restrict or order a result. We
use it on an already loaded Item and its collection of bids:

List results = session.createFilter(item.getBids(),
 "order by this.amount asc")
 .list();

This filter is equivalent to the first query shown earlier and results in identical SQL.
Collection filters have an implicit from clause and an implicit where condition. The
alias this refers implicitly to elements of the collection of bids.

Hibernate collection filters are not executed in memory. The collection of bids
may be uninitialized when the filter is called and, if so, will remain uninitialized.
Furthermore, filters don’t apply to transient collections or query results; they may
only be applied to a persistent collection currently referenced by an object associ-
ated with the Hibernate session.

The only required clause of an HQL query is from. Since a collection filter has
an implicit from clause, the following is a valid filter:

List results = session.createFilter(item.getBids(), "").list();

To the great surprise of everyone (including the designer of this feature), this triv-
ial filter turns out to be useful! You can use it to paginate collection elements:

List results = session.createFilter(item.getBids(), "")
 .setFirstResult(50)
 .setMaxResults(100)
 .list();

Usually, however, we’d use an order by with paginated queries.
Even though you don’t need a from clause in a collection filter, you can include

one if you like. A collection filter doesn’t even need to return elements of the col-
lection being filtered. The next query returns any Category with the same name as
a category in the given collection:

String filterString =
 "select other from Category other where this.name = other.name";

List results =
 session.createFilter(cat.getChildCategories(), filterString)
 .list();

The following query returns a collection of Users who have bid on the item:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced query techniques 281

List results =
 session.createFilter(item.getBids(),
 "select this.bidder")
 .list();

The next query returns all these users’ bids (including those for other items):

List results = session.createFilter(
 item.getBids(),
 "select elements(this.bidder.bids)"
).list();

Note that the query uses the special HQL elements() function (explained later) to
select all elements of a collection.

The most important reason for the existence of collection filters is to allow the
application to retrieve some elements of a collection without initializing the
entire collection. In the case of very large collections, this is important to achieve
acceptable performance. The following query retrieves all bids made by a user in
the past week:

List results =
 session.createFilter(user.getBids(),
 "where this.created > :oneWeekAgo")
 .setTimestamp("oneWeekAgo", oneWeekAgo)
 .list();

Again, this query does not initialize the bids collection of the User.

7.5.3 Subqueries

Subselects are an important and powerful feature of SQL. A subselect is a select
query embedded in another query, usually in the select, from, or where clause.

HQL supports subqueries in the where clause. We can’t think of many good uses
for subqueries in the from clause, although select clause subqueries might be a
nice future extension. (You might remember from chapter 3 that a derived property
mapping is in fact a select clause subselect.) Note that some platforms supported
by Hibernate don’t implement subselects. In particular, only the latest versions of
MySQL support subqueries. If you desire portability among many different data-
bases, you shouldn’t use this feature.

The result of a subquery might contain either a single row or multiple rows. Typ-
ically, subqueries that return single rows perform aggregation. The following sub-
query returns the total number of items sold by a user; the outer query returns all
users who have sold more than 10 items:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

282 CHAPTER 7

Retrieving objects efficiently

from User u where 10 < (
 select count(i) from u.items i where i.successfulBid is not null
)

This is a correlated subquery—it refers to an alias (u) from the outer query. The next
subquery is an uncorrelated subquery:

from Bid bid where bid.amount + 1 >= (
 select max(b.amount) from Bid b
)

The subquery in this example returns the maximum bid amount in the entire
system; the outer query returns all bids whose amount is within one (dollar) of
that amount.

Note that in both cases, the subquery is enclosed in parentheses. This is
always required.

Uncorrelated subqueries are harmless; there is no reason not to use them when
convenient, although they can always be rewritten as two queries (after all, they
don’t reference each other). You should think more carefully about the perfor-
mance impact of correlated subqueries. On a mature database, the performance
cost of a simple correlated subquery is similar to the cost of a join. However, it isn’t
necessarily possible to rewrite a correlated subquery using several separate queries.

If a subquery returns multiple rows, it’s combined with quantification. ANSI SQL
(and HQL) defines the following quantifiers:

■ any

■ all

■ some (a synonym for any)

■ in (a synonym for = any)

For example, the following query returns items where all bids are less than 100:

from Item item where 100 > all (select b.amount from item.bids b)

The next query returns all items with bids greater than 100:

from Item item where 100 < any (select b.amount from item.bids b)

This query returns items with a bid of exactly 100:

from Item item where 100 = some (select b.amount from item.bids b)

So does this one:

from Item item where 100 in (select b.amount from item.bids b)
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced query techniques 283

HQL supports a shortcut syntax for subqueries that operate on elements or indices
of a collection. The following query uses the special HQL elements() function:

List list = session.createQuery("from Category c " +
 "where :item in elements(c.items)")
 .setEntity("item", item)
 .list();

The query returns all categories to which the item belongs and is equivalent to the
following HQL, where the subquery is more explicit:

List results = session.createQuery("from Category c " +
 "where :item in (from c.items)")
 .setEntity("item", item)
 .list();

Along with elements(), HQL provides indices(), maxelement(), minelement(),
maxindex(), minindex(), and size(), each of which is equivalent to a certain corre-
lated subquery against the passed collection. Refer to the Hibernate documenta-
tion for more information about these special functions; they’re rarely used.

Subqueries are an advanced technique; you should question their frequent use,
since queries with subqueries can often be rewritten using only joins and aggrega-
tion. However, they’re powerful and useful from time to time.

By now, we hope you’re convinced that Hibernate’s query facilities are flexible,
powerful, and easy to use. HQL provides almost all the functionality of ANSI stan-
dard SQL. Of course, on rare occasions you do need to resort to handcrafted SQL,
especially when you wish to take advantage of database features that go beyond the
functionality specified by the ANSI standard.

7.5.4 Native SQL queries

We can think of two good examples why you might use native SQL queries in Hiber-
nate: HQL provides no mechanism for specifying SQL query hints, and it also
doesn’t support hierarchical queries (such as the Oracle CONNECT BY clause). We
suppose that you’ll stumble on other examples.

In these (relatively rare) cases, you’re free to resort to using the JDBC API
directly. However, doing so means writing the tedious code by hand to transform a
JDBC ResultSet to an object graph. You can avoid all this work by using Hibernate’s
built-in support for native SQL queries.

You only need to learn one trick. An SQL query result may return the state of
multiple entity instances in each row and even the state of multiple instances of the
same entity. You need a way to distinguish between the different entities. Hibernate

uses a naming scheme for the result column aliases to correctly map column values

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

284 CHAPTER 7

Retrieving objects efficiently

to the properties of particular instances. You wouldn’t want the details of this nam-
ing scheme to be exposed to the user; instead, native SQL queries are specified with
placeholders for the column aliases.

The following native SQL query shows what these placeholders—the names
enclosed in braces—look like:

String sql = "select u.USER_ID as {uzer.id},"
 + " u.FIRSTNAME as {uzer.firstname},"
 + " u.LASTNAME as {uzer.lastname} from USERS u";

Each placeholder specifies an HQL-style property name. When we call this query in
code, we must provide the entity class that is referred to by uzer in the placehold-
ers. This tells Hibernate what type of entity is returned by the query:

List results =
 session.createSQLQuery(sql, "uzer", User.class).list();

If User is mapped to the USER table, it’s verbose to respecify all the mappings from
columns to properties in this way. Here’s a shortcut:

List results =
 session.createSQLQuery("select {uzer.*} from USERS uzer",
 "uzer", User.class)
 .list();

The {uzer.*} placeholder is replaced with a list of the mapped column names and
correct column aliases for all properties of the User entity. The name used in the
placeholder must be the same name that is used as the table alias in the SQL query
(uzer in this example).

Note that the following variation works, but it isn’t good style:

List results =
 session.createSQLQuery("select {users.*} from users",
 "users",
 User.class)
 .list();

In this case, there is no explicit table alias, so the implicit alias is the same as the
table name users (note the lowercase).

A native SQL query may return tuples of entities (as usual, Hibernate represents
a tuple as an instance of Object[]):

List tuples = session.createSQLQuery(
 "select {u.*}, {b.*} from USERS u inner join BID b" +
 " where u.USER_ID = b.BIDDER_ID",
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Advanced query techniques 285

 new String[] { "u", "b" },
 new Class[] {User.class, Bid.class})
.list();

You may also have named SQL queries separate from application code in your
Hibernate mapping files. We use the <return> element to specify the query
return types:

<sql-query name="findUsersAndBids"><![CDATA[
 select {u.*}, {b.*} from USERS u inner join BID b
 where u.USER_ID = b.BIDDER_ID
]]>
 <return alias="u" class="User"/>
 <return alias="b" class="Bid"/>
</sql-query>

Since the native SQL is tightly coupled to the actual mapped tables and columns,
we strongly recommend that you define all native SQL queries in the mapping doc-
ument instead of embedding them in the Java code.

If, in some special cases, you need even more control over the SQL that is exe-
cuted, or if you want to call a stored procedure using JDBC, Hibernate offers you a
way to get a JDBC connection. A call to session.connection() returns the currently
active JDBC Connection from the Session. It’s not your responsibility to close this
connection, just to execute whatever SQL statements you like and then continue
using the Session (and finally, close the Session). The same is true for transac-
tions; you must not commit or roll back this connection yourself (unless you com-
pletely manage the connection for Hibernate, without a connection pool or
container datasource).

FAQ How do I execute a stored procedure with Hibernate? In Hibernate 2.x, there
is no direct support for stored procedures. You have to get the JDBC con-
nection and execute the SQL yourself. However, direct stored procedure
support was implemented for the next major Hibernate version at the
time of writing. You will soon be able to map CUD operations for entities
to stored procedures and directly call any stored procedure using a
Hibernate API.

When you’re writing queries and testing them in your application, you may
encounter one of the common performance issues with ORM. Fortunately, we
know how to avoid (or, at least, limit) their impact. This process is called optimizing
object retrieval. Let’s walk through the most common issues.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

286 CHAPTER 7

Retrieving objects efficiently

7.6 Optimizing object retrieval

Performance-tuning your application should first include the most obvious set-
tings, such as the best fetching strategies and use of proxies, as shown in chapter 4.
(Note that we consider enabling the second-level cache to be the last optimization
you usually make.)

The fetch joins, part of the runtime fetching strategies, as introduced in this chapter,
deserve some extra attention. However, some design issues can’t be resolved by
tuning, but can only be avoided if possible.

7.6.1 Solving the n+1 selects problem

The biggest performance killer in applications that persist objects to SQL databases
is the n+1 selects problem. When you tune the performance of a Hibernate applica-
tion, this problem is the first thing you’ll usually need to address.

It’s normal (and recommended) to map almost all associations for lazy initial-
ization. This means you generally set all collections to lazy="true" and even
change some of the one-to-one and many-to-one associations to not use outer joins
by default. This is the only way to avoid retrieving all objects in the database in
every transaction. Unfortunately, this decision exposes you to the n+1 selects prob-
lem. It’s easy to understand this problem by considering a simple query that
retrieves all Items for a particular user:

Iterator items = session.createCriteria(Item.class)
 .add(Expression.eq("item.seller", user))
 .list()
 .iterator();

This query returns a list of items, where each collection of bids is an uninitialized
collection wrapper. Suppose that we now wish to find the maximum bid for each
item. The following code would be one way to do this:

List maxAmounts = new ArrayList();
while (items.hasNext()) {
 Item item = (Item) items.next();
 BigDecimal maxAmount = new BigDecimal("0");
 for (Iterator b = item.getBids().iterator(); b.hasNext();) {
 Bid bid = (Bid) b.next();
 if (bid.getAmount().compareTo(maxAmount) == 1)
 maxAmount = bid.getAmount();
 }
 maxAmounts.add(new MaxAmount(item.getId(), maxAmount));
}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Optimizing object retrieval 287

But there is a huge problem with this solution (aside from the fact that this would
be much better executed in the database using aggregation functions): Each time
we access the collection of bids, Hibernate must fetch this lazy collection from the
database for each item. If the initial query returns 20 items, the entire transaction
requires 1 initial select that retrieves the items plus 20 additional selects to load
the bids collections of each item. This might easily result in unacceptable latency
in a system that accesses the database across a network. Usually you don't explicitly
create such operations, because you should quickly see doing so is suboptimal.
However, the n+1 selects problem is often hidden in more complex application
logic, and you may not recognize it by looking at a single routine.

The first attempt to solve this problem might be to enable batch fetching. We
change our mapping for the bids collection to look like this:

<set name="bids" lazy="true" inverse="true" batch-size="10">

With batch fetching enabled, Hibernate prefetches the next 10 collections when
the first collection is accessed. This reduces the problem from n+1 selects to n/10
+ 1 selects. For many applications, this may be sufficient to achieve acceptable
latency. On the other hand, it also means that in some other transactions, collec-
tions are fetched unnecessarily. It isn’t the best we can do in terms of reducing the
number of round trips to the database.

A much, much better solution is to take advantage of HQL aggregation and per-
form the work of calculating the maximum bid on the database. Thus we avoid
the problem:

String query = "select MaxAmount(item.id, max(bid.amount))"
 + " from Item item join item.bids bid"
 + " where item.seller = :user group by item.id";

List maxAmounts = session.createQuery(query)
 .setEntity("user", user)
 .list();

Unfortunately, this isn’t a complete solution to the generic issue. In general, we
may need to do more complex processing on the bids than merely calculating the
maximum amount. We’d prefer to do this processing in the Java application.

We can try enabling eager fetching at the level of the mapping document:

<set name="bids" inverse="true" outer-join="true">

The outer-join attribute is available for collections and other associations. It
forces Hibernate to load the association eagerly, using an SQL outer join.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

288 CHAPTER 7

Retrieving objects efficiently

Note that, as previously mentioned, HQL queries ignore the outer-join
attribute; but we might be using a criteria query.

This mapping avoids the problem as far as this transaction is concerned; we’re
now able to load all bids in the initial select. Unfortunately, any other transaction
that retrieves items using get(), load(), or a criteria query will also retrieve all the
bids at once. Retrieving unnecessary data imposes extra load on both the database
server and the application server and may also reduce the concurrency of the sys-
tem, creating too many unnecessary read locks at the database level.

Hence we consider eager fetching at the level of the mapping file to be almost
always a bad approach. The outer-join attribute of collection mappings is argu-
ably a misfeature of Hibernate (fortunately, it’s disabled by default). Occasionally
it makes sense to enable outer-join for a <many-to-one> or <one-to-one> associa-
tion (the default is auto; see chapter 4, section 4.4.6.1, “Single point associations”),
but we’d never do this in the case of a collection.

Our recommended solution for this problem is to take advantage of Hibernate’s
support for runtime (code-level) declarations of association fetching strategies.
The example can be implemented like this:

List results = session.createCriteria(Item.class)
 .add(Expression.eq("item.seller", user))
 .setFetchMode("bids", FetchMode.EAGER)
 .list();

// Make results distinct
Iterator items = new HashSet(results).iterator();

List maxAmounts = new ArrayList();
for (; items.hasNext();) {
 Item item = (Item) items.next();
 BigDecimal maxAmount = new BigDecimal("0");
 for (Iterator b = item.getBids().iterator(); b.hasNext();) {
 Bid bid = (Bid) b.next();
 if (bid.getAmount().compareTo(maxAmount) == 1)
 maxAmount = bid.getAmount();
 }
 maxAmounts.add(new MaxAmount(item.getId(), maxAmount));
}

We disabled batch fetching and eager fetching at the mapping level; the collection
is lazy by default. Instead, we enable eager fetching for this query alone by calling
setFetchMode(). As discussed earlier in this chapter, this is equivalent to a fetch
join in the from clause of an HQL query.

The previous code example has one extra complication: The result list returned

by the Hibernate criteria query isn’t guaranteed to be distinct. In the case of a
query that fetches a collection by outer join, it will contain duplicate items. It’s the

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Optimizing object retrieval 289

application’s responsibility to make the results distinct if that is required. We imple-
ment this by adding the results to a HashSet and then iterating the set.

So, we have established a general solution to the n+1 selects problem. Rather
than retrieving just the top-level objects in the initial query and then fetching
needed associations as the application navigates the object graph, we follow a two-
step process:

1 Fetch all needed data in the initial query by specifying exactly which associa-
tions will be accessed in the following unit of work.

2 Navigate the object graph, which will consist entirely of objects that have
already been fetched from the database.

This is the only true solution to the mismatch between the object-oriented world,
where data is accessed by navigation, and the relational world, where data is
accessed by joining.

Finally, there is one further solution to the n+1 selects problem. For some
classes or collections with a sufficiently small number of instances, it’s possible to
keep all instances in the second-level cache, avoiding the need for database access.
Obviously, this solution is preferred where and when it’s possible (it isn’t possible
in the case of the bids of an Item, because we wouldn’t enable caching for this
kind of data).

The n+1 selects problem may appear whenever we use the list() method of
Query to retrieve the result. As we mentioned earlier, this issue can be hidden in
more complex logic; we highly recommend the optimization strategies mentioned
in chapter 4, section 4.4.7, “Tuning object retrieval” to find such scenarios. It’s also
possible to generate too many selects by using find(), the shortcut for queries on
the Session API, or load() and get().

There is a third query API method we haven’t discussed yet. It’s extremely impor-
tant to understand when it’s applicable, because it produces n+1 selects!

7.6.2 Using iterate() queries

The iterate() method of the Session and Query interfaces behaves differently
than the find() and list() methods. It’s provided specifically to let you take full
advantage of the second-level cache.

Consider the following code:

Query categoryByName =
 session.createQuery("from Category c where c.name like :name");

categoryByName.setString("name", categoryNamePattern);
List categories = categoryByName.list();

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

290 CHAPTER 7

Retrieving objects efficiently

This query results in execution of an SQL select, with all columns of the CATEGORY
table included in the select clause:

select CATEGORY_ID, NAME, PARENT_ID from CATEGORY where NAME like ?

If we expect that categories are already cached in the session or second-level cache,
then we only need the identifier value (the key to the cache). This will reduce the
amount of data we have to fetch from the database. The following SQL would be
slightly more efficient:

select CATEGORY_ID from CATEGORY where NAME like ?

We can use the iterate() method:

Query categoryByName =
 session.createQuery("from Category c where c.name like :name");
categoryByName.setString("name", categoryNamePattern);
Iterator categories = categoryByName.iterate();

The initial query only retrieves the category primary key values. We then iterate
through the result, and Hibernate looks up each Category in the current session
and in the second-level cache. If a cache miss occurs, Hibernate executes an addi-
tional select, retrieving the category by its primary key from the database.

In most cases, this is a minor optimization. It’s usually much more important to
minimize row reads than to minimize column reads. Still, if your object has large
string fields, this technique may be useful to minimize data packets on the network
and, therefore, latency.

Let’s talk about another optimization, which also isn’t applicable in every case.
So far, we’ve only discussed caching the results of a lookup by identifier (including
implicit lookups, such as loading a lazy association) in chapter 5. It’s also possible
to cache the results of Hibernate queries.

7.6.3 Caching queries

For applications that perform many queries and few inserts, deletes, or updates,
caching queries can have an impact on performance. However, if the application
performs many writes, the query cache won’t be utilized efficiently. Hibernate
expires a cached query result set when there is any insert, update, or delete of any
row of a table that appears in the query.

Just as not all classes or collections should be cached, not all queries should be
cached or will benefit from caching. For example, if a search screen has many dif-
ferent search criteria, then it’s unlikely that the user will choose the same criterion

twice. In this case, the cached query results won’t be utilized, and we’d be better
off not enabling caching for that query.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Optimizing object retrieval 291

Note that the query cache does not cache the entities returned in the query
result set, just the identifier values. Hibernate will, however, fully cache the value
typed data returned by a projection query. For example, the projection query
"select u, b.created from User u, Bid b where b.bidder = u" will result in caching
of the identifiers of the users and the date object when they made their bids. It’s
the responsibility of the second-level cache (in conjunction with the session cache)
to cache the actual state of entities. So, if the cached query you just saw is executed
again, Hibernate will have the bid-creation dates in the query cache but perform a
lookup in the session and second-level cache (or even execute SQL again) for each
user that was in the result. This is similar to the lookup strategy of iterate(), as
explained in the previous section.

The query cache must be enabled using a Hibernate property setting:

hibernate.cache.use_query_cache true

However, this setting alone isn’t enough for Hibernate to cache query results. By
default, Hibernate queries always ignore the cache. To enable query caching for a
particular query (to allow its results to be added to the cache, and to allow it to
draw its results from the cache), you use the Query interface:

Query categoryByName =
 session.createQuery("from Category c where c.name = :name");
categoryByName.setString("name", categoryName);
categoryByName.setCacheable(true);

Even this doesn’t give you sufficient granularity, however. Different queries may
require different query expiration policies. Hibernate allows you to specify a differ-
ent named cache region for each query:

Query userByName =
 session.createQuery("from User u where u.username= :uname");
userByName.setString("uname", username);
userByName.setCacheable(true);
userByName.setCacheRegion("UserQueries");

You can now configure the cache expiration policies using the region name. When
query caching is enabled, the cache regions are as follows:

■ The default query cache region, net.sf.hibernate.cache.QueryCache

■ Each named region

■ The timestamp cache, net.sf.hibernate.cache.UpdateTimestampsCache, which
is a special region that holds timestamps of the most recent updates to

each table

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

292 CHAPTER 7

Retrieving objects efficiently

Hibernate uses the timestamp cache to decide if a cached query result set is stale.
Hibernate looks in the timestamp cache for the timestamp of the most recent
insert, update, or delete made to the queried table. If it’s later than the timestamp
of the cached query results, then the cached results are discarded and a new query
is issued. For best results, you should configure the timestamp cache so that the
update timestamp for a table doesn’t expire from the cache while queries against
the table are still cached in one of the other regions. The easiest way is to turn off
expiry for the timestamp cache.

Some final words about performance optimization: Remember that issues like
the n+1 selects problem can slow your application to unacceptable performance.
Try to avoid the problem by using the best fetching strategy. Verify that your
object-retrieval technique is the best for your use case before you look into cach-
ing anything.

From our point of view, caching at the second level is an important feature, but
it isn’t the first option when optimizing performance. Errors in the design of que-
ries or an unnecessarily complex part of your object model can’t be improved with
a “cache it all” approach. If an application only performs at an acceptable level with
a hot cache (a full cache) after several hours or days of runtime, you should check it
for serious design mistakes, unperformant queries, and n+1 selects problems.

7.7 Summary

We don’t expect that you know everything about HQL and criteria after reading
this chapter once. However, the chapter will be useful as a reference in your daily
work with Hibernate, and we encourage you to come back and reread sections
whenever you need to.

The code examples in this chapter show the three basic Hibernate query
techniques: HQL, a query by criteria that includes a query by example mecha-
nism, and direct execution of database-specific SQL queries.

We consider HQL the most powerful method. HQL queries are easy to under-
stand, and they use persistent class and property names instead of table and col-
umn names. HQL is polymorphic: You can retrieve all objects with a given interface
by querying for that interface. With HQL, you have the full power of arbitrary
restrictions and projection of results, with logical operators and function calls just
as in SQL, but always on the object level using class and property names. You can
use named parameters to bind query arguments in a secure and typesafe way.
Report-style queries are also supported, and this is an important area where other

ORM solutions usually lack features.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 293

Most of this is also true for criteria-based queries; but instead of using a query
string, you use a typesafe API to construct the query. So-called example objects can
be combined with criteria—for example, to retrieve “all items that look like the
given example.”

The most important part of object retrieval is the efficient loading of associated
objects—that is, how you define the part of the object graph you’d like to load from
the database in one operation. Hibernate provides lazy, eager, and batch fetching
strategies, in mapping metadata and dynamically at runtime. You can use associa-
tion joins and result iteration to prevent common problems such as the n+1 selects
problem. Your goal is to minimize database roundtrips with many small queries, but
at the same time, you also try to minimize the amount of data loaded in one query.

The best query and the ideal object-retrieval strategy depends on your use case,
but you should be well prepared with the examples in this chapter and Hibernate’s
excellent runtime fetching strategies.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Writing Hibernate applications
This chapter covers

■ Designing Hibernate applications
using servlets

■ Integrating with EJBs in managed
environments

■ Creating an implementation using
application transactions

■ Handling legacy data and audit logging
294

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 295

Hibernate is intended to be used in just about any architectural scenario imagin-
able (as long as the application is written in Java). It might run inside a servlet
engine—where you could use it with web application framework like Struts, Web-
Work or Tapestry—or inside an EJB container, a Swing client, a lightweight con-
tainer, or even a JMX server like JBoss.

Each of these environments requires infrastructure to integrate Hibernate with
the way requests, transactions, and database resources are managed. The Hiber-
nate core provides optional components for certain common integration scenar-
ios, including integration with JTA, JNDI-bound datasources, JMX, JCA, and the
transaction managers of all popular application servers. In addition, some frame-
works like Spring and Keel ship with built-in Hibernate support, and plugin sup-
port is available for others including Tapestry, Apache Avalon, and PicoContainer.
JBoss Application Server features special support for Hibernate archive deploy-
ment and integration of Hibernate as a JMX-managed component.

Even—perhaps especially—with all these options, it’s often difficult to see exactly
how Hibernate should be integrated into a particular Java-based architecture.
Inevitably, you’ll need to write infrastructural code to support your own applica-
tion design. In this chapter, we’ll describe some common Java architectures and
show how Hibernate could be integrated into each scenario. However, we don’t
discuss integration with specific frameworks. We don’t expect your application
design to exactly match any of the scenarios we show, and we don’t expect you to
integrate Hibernate using exactly the code that we use. Rather, we’ll demonstrate
some common patterns and let you adapt them to your own tastes. For this reason,
our examples are plain Java, using only the Java servlet and EJB APIs and no third-
party frameworks.

In the first section of this chapter, we’ll discuss application layering and show
how it affects your persistence-related code. In the second part, we’ll return to the
interesting topic of application transactions (chapter 5) and show practical exam-
ples of the various ways application transactions can be implemented with Hiber-
nate. In the third section, we’ll discuss special types of data (especially legacy data)
and show how you can use Hibernate with these data types. We’ll also create a
Hibernate persistence Interceptor, which is useful in many special cases.

8.1 Designing layered applications

We emphasized the importance of disciplined application layering in chapter 1.
Layering helps you achieve separation of concerns, making code more readable by

grouping code that does similar things. On the other hand, layering carries a

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

296 CHAPTER 8

Writing Hibernate applications

price: Each extra layer increases the amount of code it takes to implement a simple
piece of functionality—and more code makes the functionality itself more difficult
to change.

We won’t try to form any conclusions about the right number of layers to use
(and certainly not about what those layers should be) since the “best” design varies
from application to application and a complete discussion of application architec-
ture is well outside the scope of this book. We merely observe that, in our opinion,
overengineering has been endemic in the Java community, and overly ambitious
multilayered architectures have significantly contributed to the cost of Java devel-
opment and to the perceived complexity of J2EE. On the other hand, we do agree
that a dedicated persistence layer is a sensible choice for most applications and that
persistence-related code shouldn’t be mixed with business logic or presentation.

In this section, we’ll show you how to separate Hibernate-related code from your
business and presentation layers, first in a servlet environment and then in an EJB
environment. We need a simple use case from the CaveatEmptor application to
demonstrate these ideas.

When a user places a bid on an item, CaveatEmptor must perform the following
tasks, all in a single request:

1 Check that the amount entered by the user is greater than the maximum
existing bid for the item.

2 Check that the auction hasn’t yet ended.

3 Create a new bid for the item.

If either of the checks fails, the user should be informed of the reason for the fail-
ure; if both checks are successful, the user should be informed that the new bid has
been made. These checks are our business rules. If a failure occurs while accessing
the database, the user should be informed that the system is currently unavailable
(an infrastructure concern).

Let’s see how we can implement this in a servlet engine like Tomcat.

8.1.1 Using Hibernate in a servlet engine

First, we need a way for our application to obtain new Session instances. We’ll write
a simple helper (or utility) class to handle configuration and SessionFactory initial-
ization (see chapter 2) and provide easy access to new Sessions. The full code for
this class is shown in listing 8.1.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 297

public class HibernateUtil {

 private static final SessionFactory sessionFactory;

 static {
 try {
 Configuration cfg = new Configuration();
 sessionFactory = cfg.configure().buildSessionFactory();
 } catch (Throwable ex) {
 ex.printStackTrace(System.out);
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static Session getSession() throws HibernateException {
 return sessionFactory.openSession();
 }
}

The SessionFactory is bound to a static (and final) variable. All our threads
can share this one constant, because SessionFactory is threadsafe.

The SessionFactory is created in a static initializer block. This block is executed
when a classloader loads the class.

The process of building the SessionFactory from a Configuration is the same as
always.

We catch and wrap Throwable because we’d also like to catch NoClassDefFound-
Error and other subclasses of Error, not just Exception and RuntimeException.
Always log the exception; there are certain conditions when a static initializer
exception might be swallowed. Of course, you should use your own logging mech-
anism rather than System.out.

Our utility class has just one public method, a factory method for new Sessions.
We could instead provide a getSessionFactory() method, but this version saves a
line of code each time a Session is needed.

This (very trivial) implementation stores the SessionFactory in a static variable.
You could even keep a reference to SessionFactory in the ServletContext or some
other application-scope registry.

Listing 8.1 A simple Hibernate utility class

B

C

D

E

F

B

C

D

E

F

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

298 CHAPTER 8

Writing Hibernate applications

Note that this design is completely cluster-safe. The SessionFactory is essentially
stateless (it keeps no state relative to running transactions), except for the second-
level cache. It’s the responsibility of the cache provider to maintain cache consis-
tency across a cluster. So, you can safely have as many actual SessionFactory
instances as you like (in practice, you want as few as possible, since the SessionFac-
tory consumes significant resources and is expensive to initialize).

Now that we’ve solved the problem of where to put the SessionFactory (a FAQ),
we continue with our use-case implementation. Most Java applications use some
kind of Model/View/Controller (MVC) web application framework; even many of
those that use plain servlets follow the MVC pattern by using JSPs or Velocity tem-
plates to implement the View, separating application control logic into a servlet or
multiple servlets. Let’s write such a controller servlet.

Writing a simple action servlet
With an MVC approach, we write the code that implements the “place bid” use
case in an execute() method of an action named PlaceBidAction (see
listing 8.2). We’re assuming some kind of web framework, and we don’t show how
to read request parameters or how to forward to the next page. The code shown
might even be the doPost() method of a plain servlet. (Note that we don’t con-
sider this first implementation to be a good one—we’ll make substantial improve-
ments later.)

public void execute() {

 Long itemId = ... // Get value from request
 Long userId = ... // Get value from request
 BigDecimal bidAmount = ... // Get value from request

 try {
 Session session = HibernateUtil.getSession();
 Transaction tx = session.beginTransaction();
 try {

 // Load requested Item
 Item item = (Item) session.load(Item.class, itemId,
 LockMode.UPGRADE);

 // Check auction still valid
 if (item.getEndDate().before(new Date())) {
 ... // Forward to error page
 }

Listing 8.2 Implementing a simple use case in one execute() method

B

C

D

 // Check amount of Bid
 Query q =

E

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 299

 session.createQuery("select max(b.amount)" +
 " from Bid b where b.item = :item");
 q.setEntity("item", item);
 BigDecimal maxBidAmount = (BigDecimal) q.uniqueResult();
 if (maxBidAmount.compareTo(bidAmount) > 0) {
 ... // Forward to error page
 }

 // Add new Bid to Item
 User bidder = (User) session.load(User.class, userId);
 Bid newBid = new Bid(bidAmount, item, bidder);
 item.addBid(newBid);

 ... // Place new Bid in scope for next page

 tx.commit();

 ... // Forward to showSuccess.jsp page

 } catch (HibernateException ex) {
 if (tx != null) tx.rollback();
 throw ex;
 } finally {
 session.close();
 }
 } catch (HibernateException ex) {
 ... // Throw application specific exception
 }
}

First, we get a new Session using our utility class and then start a database
transaction.

We load the Item from the database, using its identifier value, obtaining a pessi-
mistic lock (this prevents two simultaneous bids for the same item).

If the end date of the auction is earlier than the current date, we forward to an
error page. Usually you’ll want more sophisticated error handling for this excep-
tion, with a qualified error message.

Using an HQL query, we check if there is a higher bid for the current item in the
database. If there is, we forward to an error message.

If all checks are successful, we place the new bid by adding it to the item. We don’t
have to save it manually; it will be saved using transitive persistence (cascading
from the Item to Bid).

Committing the database transaction flushes the current state of the Session to

F

G

H

I

J

B

C

D

E

F

G

the database.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

300 CHAPTER 8

Writing Hibernate applications

If any method in the inner try-catch block threw an exception, we have to roll
back the transaction and rethrow the exception.

The Session must always be closed, freeing database resources.

The outer try-catch block is responsible for exceptions thrown by Ses-

sion.close() and Transaction.rollback() and, of course, the rethrown inner
exception.

The first thing wrong with this implementation is the clutter caused by all the ses-
sion, transaction, and exception-handling code. Since this code is typically identi-
cal for all actions, we’d like to centralize it somewhere. One option is to place it in
the execute() method of an abstract superclass of our actions.

We also have a problem with lazy initialization if we access the new bid on the
showSuccess.jsp page: By the time we get to the JSP, the Hibernate session is
already closed, so we can’t access unfetched lazy associations. We encourage you to
think about this issue; we made the experience that this might not be obvious for
new Hibernate users.

A great solution to both problems is the thread-local session pattern.

The thread-local session
A thread-local session is a single session instance associated with a particular
request. It lets you implement a persistence context, similar to the JTA notion of a
transaction context. Any components called in the same request will share the
same session and persistence context.

It’s especially useful to include a JSP in the persistence context. The JSP pulls
information from the domain model by navigating the object graph beginning at
some persistent object in the session or request scope—for example, the newly cre-
ated bid that was placed in the request scope by our action. However, the object
graph might include uninitialized associations (proxies or collections) that must
be traversed (and initialized) while rendering the view.

In our example, the JSP might list all items the current bidder has for sale by call-
ing newBid.getBidder().getItems().iterator(). (This sounds a little contrived,
but it’s certainly possible.) Since the items association is lazy, it would be
unfetched at this point.

But we already closed the Hibernate session at the end of the action’s execute()
method, so Hibernate will throw a LazyInitializationException when the associ-
ation is accessed—the database connection is no longer available, and the object

H

I

J

graph is detached, so Hibernate can’t fetch the collection. It’s possible to write our
action to ensure that all needed associations are fully initialized before forwarding

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 301

to the view (we discuss this later), but a more convenient approach is to leave the
session open until the view is completely rendered.

FAQ Why can’t Hibernate open a new connection (or session) if it has to lazy-load
associations? First, we think it’s a better solution to fully initialize all
required objects for a specific use case using eager fetching (this
approach is less vulnerable to the n+1 selects problem). Furthermore,
opening new database connections (and ad hoc database transactions!)
implicitly and transparently to the developer exposes the application to
transaction isolation issues. When do you close the session and end the
ad hoc transaction—after each lazy association is loaded? We strongly
prefer transactions to be clearly and explicitly demarcated by the applica-
tion developer. If you want to enable lazy fetching for a detached
instance, you can use lock() to attach it to a new session.

The thread-local session pattern allows you to have a single Hibernate session per
request, spanning the view and potentially multiple action executes(). Java pro-
vides the ThreadLocal class for implementing thread scoped variables. The thread-
local session pattern combines a ThreadLocal with an interceptor or servlet filter
that closes the Session at the end of the request, after the view is rendered and just
before the response is sent to the client.

First, we enhance the HibernateUtil helper. Instead of opening a new Session
when getSession() is called, it returns a Session kept in a ThreadLocal variable,
that is, it returns the Session associated with the current thread. The Hiberna-
teUtil class is also a good place to implement generic exception handling; hence
we add some other static helper methods that wrap exceptions. The full code of
our improved HibernateUtil is shown in listing 8.3.

 public class HibernateUtil {

 private static final SessionFactory sessionFactory;

 private static final ThreadLocal threadSession =
 new ThreadLocal();
 private static final ThreadLocal threadTransaction =
 new ThreadLocal();
 static {
 // Initialize SessionFactory...
 }

 public static Session getSession() {
 Session s = (Session) threadSession.get();

Listing 8.3 An improved version of HibernateUtil using thread-local variables

B

C

D

 // Open a new Session, if this thread has none yet

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

302 CHAPTER 8

Writing Hibernate applications

 try {
 if (s == null) {
 s = sessionFactory.openSession();
 threadSession.set(s);
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 return s;
 }

 public static void closeSession() {
 try {
 Session s = (Session) threadSession.get();
 threadSession.set(null);
 if (s != null && s.isOpen())
 s.close();
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 }

 public static void beginTransaction() {
 Transaction tx = (Transaction) threadTransaction.get();
 try {
 if (tx == null) {
 tx = getSession().beginTransaction();
 threadTransaction.set(tx);
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 }

 public static void commitTransaction() {
 Transaction tx = (Transaction) threadTransaction.get();
 try {
 if (tx != null && !tx.wasCommitted()
 && !tx.wasRolledBack())
 tx.commit();
 threadTransaction.set(null);
 } catch (HibernateException ex) {
 rollbackTransaction();
 throw new InfrastructureException(ex);
 }
 }

 public static void rollbackTransaction() {
 Transaction tx = (Transaction) threadTransaction.get();
 try {
 threadTransaction.set(null);

E

F

G

H

 if (tx != null && !tx.wasCommitted()
 && !tx.wasRolledBack()) {

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 303

 tx.rollback();
 }
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 } finally {
 closeSession();
 }
 }

}

The Session of the current thread is stored in this ThreadLocal variable.

We use one database transaction for all operations, so we use another ThreadLocal
for the Transaction. Both Session and Transaction are now associated with the
thread, and many action executions in a thread can participate in the same data-
base transaction.

The getSession() method has been extended to use the thread-local variable; we
also wrap the checked HibernateException in an unchecked InfrastructureEx-
ception (part of CaveatEmptor).

We also wrap the exceptions thrown by Session.close() in this static helper
method.

The code used to start a new database transaction is similar to the getSession()
method.

If committing the database transaction fails, we immediately roll back the transac-
tion. We don’t do anything if the transaction was already committed or rolled back.

After rolling back the database transaction, the Session is closed.

This utility class is much more powerful than our first version: It provides thread-
local sessions and database transactions, and it wraps all exceptions in a runtime
exception defined by our application (or framework). This simplifies exception
handling in application code significantly, and the thread-local pattern gives us the
flexibility to share a single session among all actions and JSPs in a particular thread.
The same is true for database transactions: You can either have a single database
transactions for the whole thread or call beginTransaction() and commitTransac-
tion() whenever you need to.

You can also see that calling getSession() for the first time in a particular thread
opens a new Session. Let’s now discuss the second part of the thread-local session

B

C

D

E

F

G

H

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

304 CHAPTER 8

Writing Hibernate applications

design pattern: closing the Session after the view is rendered, instead of at the end
of each execute() method.

We implement this second part using a servlet filter. Other implementations are
possible, however; for example, the WebWork2 framework offers pluggable inter-
ceptors we could use. The job of the servlet filter is to close the Session before the
response is sent to the client (and after all views are rendered and actions are exe-
cuted). It’s also responsible for committing any pending database transactions. See
the doFilter() method of this servlet filter in listing 8.4.

public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {

 try {

 chain.doFilter(request, response);
 HibernateUtil.commitTransaction();

 } finally {
 HibernateUtil.closeSession();
 }

}

We don’t start a database transaction or open a session until an action requests
one. Any subsequent actions, and finally the view, reuse the same session and trans-
action. After all actions (servlets) and the view are executed, we commit any pend-
ing database transaction. Finally, no matter what happens, we close the Session to
free resources.

Now, we can simplify our action’s execute() method to the following:

public void execute() {
 // Get values from request

 try {
 HibernateUtil.beginTransaction();
 Session session = HibernateUtil.getSession();

 // Load requested Item
 // Check auction still valid
 // Check amount of Bid
 // Add new Bid to Item
 // Place new Bid in scope for next page

Listing 8.4 The doFilter() method closes the Hibernate Session
 // Forward to showSuccess.jsp page

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 305

 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);

 } catch (Exception ex) {
 // Throw application specific exception
 }

}

We’ve reduced the exception-handling code to a single try/catch block. We can
safely rethrow checked exceptions such as HibernateException as runtime excep-
tions; we can use our application’s (or framework’s) exception hierarchy.

The thread-local session pattern isn’t perfect, unfortunately. Changes made to
objects in the Session are flushed to the database at unpredictable points, and we
can only be certain that they have been executed successfully after the Transaction
is committed. But our transaction commit occurs after the view has been rendered.
The problem is the buffer size of the servlet engine: If the contents of the view
exceed the buffer size, the buffer might get flushed and the contents sent to the
client. The buffer may be flushed many times when the content is rendered, but
the first flush also sends the HTTP status code. If the SQL statements executed at
transaction commit time were to trigger a constraint violation in the database, the
user might already have seen a successful output! We can’t change the status code
(for example, use a 500 Internal Server Error), because it’s already been sent to
the client (as 200 OK).

There are several ways to prevent this rare exception: You could adjust the buffer
size of your servlet engine, or flush the Hibernate session before forwarding/redi-
recting to the view (add a flushSession() helper method to HibernateUtil). Some
web frameworks don’t immediately fill the response buffer with rendered content;
they use their own OutputStream and flush it with the response only after the view
has been completely rendered. So, we consider this a problem only with plain Java
servlet programming.

Our action is already much more readable. Unfortunately, it still mixes
together three distinctly different responsibilities: pageflow, access to the persis-
tent store, and business logic. There is also a catch clause for the HibernateExcep-
tion that looks misplaced. Let’s address the last responsibility first, since it’s the
most important.

Creating "smart" domain models
The idea behind the MVC pattern is that control logic (in our application, this is
pageflow logic), view definitions, and business logic should be cleanly separated.

Currently, our action contains some business logic—code that we might even be

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

306 CHAPTER 8

Writing Hibernate applications

able to reuse in the admittedly unlikely event that our application gained a new
user interface—and our domain model consists of “dumb” data-holding objects.
The persistent classes define state but no behavior.

We migrate the business logic into our domain model. Doing so adds a couple
of lines of code but also increases the potential for later reuse; it’s also certainly
more object-oriented and therefore offers various ways to extend the business logic
(for example, using a strategy pattern for different bid strategies). First, we add the
new method placeBid() to the Item class:

public Bid placeBid(User bidder, BigDecimal bidAmount)
 throws BusinessException {

 // Auction still valid
 if (this.getEndDate().before(new Date())) {
 throw new BusinessException("Auction already ended.");
 }

 // Create new Bid
 Bid newBid = new Bid(bidAmount, this, bidder);

 // Place bid for this Item
 this.addBid(newBid);
 return newBid;
}

This code enforces business rules that constrain the state of our business objects
but don’t execute data-access code. The motivation is to encapsulate business
logic in classes of the domain model without any dependency on persistent data
access. You might have discovered that this method of Item doesn’t implement the
check for the highest bid. Keep in mind that these classes should know nothing
about persistence because we might need them outside the persistence context
(for example, in the presentation tier). We could even implement “Check the
highest bid amount” in this placeBid() method by iterating the collection of bids
for the item and finding the highest amount. This isn’t as performant as an HQL
query, so we prefer to implement the check elsewhere later. Now, we simplify our
action to the following:

public void execute() {

 // Get values from request

 try {
 HibernateUtil.beginTransaction();
 Session session = HibernateUtil.getSession();

 // Load requested Item

 Item item = (Item) session.load(Item.class, itemId);

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 307

 // Check amount of Bid with a query
 Query q =
 session.createQuery("select max(b.amount)" +
 " from Bid b where b.item = :item");
 q.setEntity("item", item);
 BigDecimal maxBidAmount = (BigDecimal) q.uniqueResult();
 if (maxBidAmount.compareTo(bidAmount) > 0) {
 throw new BusinessException("Bid amount too low.");
 }

 // Place Bid
 User bidder = (User) session.load(User.class, userId);
 Bid newBid = item.placeBid(bidder, bidAmount);

 // Place new Bid in scope for next page
 // Forward to showSuccess.jsp page

 } catch (HibernateException ex) {
 throw new InfrastructureException(e1);

 } catch (BusinessException ex) {
 // Execute exception specific code

 } catch (Exception ex) {
 // Throw application specific exception
 }

}

The business logic for placing a bid is now (almost completely) encapsulated in the
placeBid() method and control logic in the action. We can even design a different
pageflow by catching and forwarding specific exceptions. But the MVC pattern
doesn’t say much about where P for Persistence should go. We’re sure the Hiber-
nate code doesn’t belong in the action, however: Persistence code should be iso-
lated in the persistence layer. Let’s encapsulate that code with a DAO and create a
façade for persistence operations.

Data access objects
Mixing data access code with control logic violates our emphasis on separation of
concerns. For all but the simplest applications, it makes sense to hide Hibernate
API calls behind a façade with higher level business semantics. There is more than
one way to design this façade—some small applications might use a single Persis-
tenceManager object; some might use some kind of command-oriented design—
but we prefer the DAO pattern.

The DAO design pattern originated in Sun’s Java BluePrints. It’s even used in the
infamous Java Petstore demo application. A DAO defines an interface to persis-

tence operations (CRUD and finder methods) relating to a particular persistent
entity; it advises you to group code that relates to persistence of that entity.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

308 CHAPTER 8

Writing Hibernate applications

Let’s create an ItemDAO class, which will eventually implement all persistence
code related to Items. For now, it contains only the getItemById() method, along
with getMaximumBidAmount(). The full code of the DAO implementation is shown
in listing 8.5.

public class ItemDAO {

 public ItemDAO() {
 HibernateUtil.beginTransaction();
 }

 public Item getItemById(Long itemId) {
 Session session = HibernateUtil.getSession();
 Item item = null;
 try {

 item = (Item) session.load(Item.class, itemId);

 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 return item;
 }

 public BigDecimal getMaxBidAmount(Long itemId) {
 Session session = HibernateUtil.getSession();
 BigDecimal maxBidAmount = null;
 try {

 String query = "select max(b.amount)" +
 " from Bid b where b.item = :item";
 Query q = session.createQuery(query);
 q.setLong("itemId", itemId.longValue());
 maxBidAmount = (BigDecimal) q.uniqueResult();

 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 return maxBidAmount;
 }
}

Whenever a new ItemDAO is created, we start a new database transaction or join the
current database transaction of the running thread. Whether getMaximumBid-
Amount() belongs on ItemDAO or a BidDAO is perhaps a matter of taste; but since the
argument is an Item identifier, it seems to naturally belong here. By letting the DAO

Listing 8.5 A simple DAO abstracting item-related persistence operations
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 309

wrap all HibernateExceptions in our application’s InfrastructureException, we’ve
finally managed to move all Hibernate exception handling out of the action.

We also need a UserDAO, which, for now, contains just a getUserById() method:

public class UserDAO {

 public UserDAO() {
 HibernateUtil.beginTransaction();
 }

 public User getUserById(Long userId) {
 Session session = HibernateUtil.getSession();
 User user = null;
 try {
 user = (User) session.load(User.class, userId);
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 return user;
 }

}

You can begin to see a new advantage of the thread-local session pattern. All our
DAOs can share the same Hibernate session (and even database transaction) with-
out the need for you to pass the session explicitly as a parameter to the DAO
instance. This is a powerful advantage that becomes more important as your appli-
cation grows and layering becomes more complex.

Armed with our new DAO classes, we can further simplify our action code to
the following:

public void execute() {

 // Get values from request

 try {
 ItemDAO itemDAO = new ItemDAO();
 UserDAO userDAO = new UserDAO();

 if (itemDAO.getMaxBidAmount(itemId).compareTo(bidAmount) > 0)
 throw new BusinessException("Bid amount too low.");

 Item item = itemDAO.getItemById(itemId);
 Bid newBid =
 item.placeBid(userDAO.getUserById(userId), bidAmount);

 // Place new Bid in scope for next page
 // Forward to showSuccess.jsp page

 } catch (BusinessException ex) {

 // Forward to error page

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

310 CHAPTER 8

Writing Hibernate applications

 } catch (Exception ex) {
 // Throw application specific exception
 }

}

Notice how much more self-documenting this code is than our first implementa-
tion. Someone who knows nothing about Hibernate can still understand immedi-
ately what this method does, without the need for code comments.

We’re now almost satisfied with our implementation of this use case. Our meth-
ods are all short, readable, and somewhat reusable. Messy exception- and transac-
tion-related code is completely externalized to infrastructure. However, there is
still a mix of concerns. One piece of our business logic is still visible in the action
implementation: the check against the current maximum bid. Code that throws a
BusinessException should be in the domain model.

An important question arises: If we moved this routine into the placeBid()
method of Item, the domain model implementation will have a dependency on the
persistence API, the DAOs. This should be avoided, because it would complicate
unit testing of the domain objects and business logic (the “persistence” concern
leaked into the domain model implementation). So, do we have no other choice
but to keep this piece of business code with our control logic?

The solution for this problem is some slight refactoring of the placeBid()
method, two new methods on the ItemDAO class, and some changes to our control
code, summarized in the following code snippet:

BigDecimal currentMaxAmount = itemDAO.getMaxBidAmount(itemId);
BigDecimal currentMinAmount = itemDAO.getMinBidAmount(itemId);
Item item = itemDAO.getItemById(itemId);
User user = userDAO.getUserById(userId)
newBid = item.placeBid(user, newAmount,
 currentMaxAmount, currentMinAmount);

We changed several things. First, we moved the business logic and exception to
the placeBid() method. We call this method with new arguments: the current
maximum and minimum bid amounts. We retrieve the two values using new meth-
ods of the ItemDAO. Now, all that’s left in our action servlet are calls to the persis-
tence layer and calls that start the execution of some business logic. Our business
logic is encapsulated in the domain model and fully reusable; there is no depen-
dency on the persistence layer’s DAO interface. You will likely face challenges like
this is your own application, so be prepared to re-think and refactor your code for
clean layering.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 311

Let’s get back to our discussion of the DAO pattern. Actually, a DAO is barely a
pattern at all—there are many ways to implement this basic idea. Some developers
go so far as to combine their DAO framework with an abstract factory pattern,
allowing runtime switching of the persistence mechanism. This approach is usu-
ally motivated by the need to remain independent of vendor-specific SQL. Since
Hibernate already does a good (although not a complete) job of abstracting our
Java code away from the vendor-specific SQL dialect, we prefer to keep things sim-
ple for now.

The next step is to see how we can take this code and adapt it to run in an EJB
container. Obviously, we’d like to change as little as possible. We’ve been arguing
all along that one advantage of POJOs and transparent persistence is portability
between different runtime environments. If we now have to rewrite all the code for
placing a bid, we’re going to look a bit silly.

8.1.2 Using Hibernate in an EJB container

From our point of view, the most important difference between a servlet-based
application and an application where business logic and data access executes in
the EJB container is the possibility of physical separation of tiers. If the EJB con-
tainer runs in a different process than the servlet engine, it’s absolutely essential
to minimize requests from the servlet tier to the EJB tier. Latency is added by
every interprocess request, increasing the application response time and reduc-
ing concurrency due to the need for either more database transactions or
longer transactions.

Hence it’s essential that all data access related to a single user request occur
within a single request to the EJB tier. This means you can’t use the previous lazy
approach, where the view was allowed to pull data from the domain model objects
as needed. Instead, the business (EJB) tier must accept responsibility for fetching
all data that will be needed subsequently for rendering the view.

In existing systems that use entity beans, you can already see this idea. The session
façade pattern allows these systems to group all activity related to a particular user
request into a single request to the EJB tier. The ubiquitous data-transfer object
(DTO) pattern provides a way of packaging together the data that the view will
need. A DTO is a class that holds the state of a particular entity; you can think of a
DTO as a JavaBean or POJO without any business methods. DTOs are required in
an entity bean environment, since entity beans aren’t serializable and can’t be
transported across tiers. In our case, we can easily make our POJOs serializable, so

we naturally find ourselves questioning the need for DTOs.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

312 CHAPTER 8

Writing Hibernate applications

Rethinking data transfer objects
The notion that, in an EJB-based application, the web tier shouldn’t communicate
directly with the domain model, is deeply embedded in J2EE practices and think-
ing. We doubt that this idea will vanish overnight, and there are certain reasonable
arguments in favor of this notion. However, you shouldn’t mistake these arguments
for the real reason why DTOs became so universally accepted.

The DTO pattern originated when the J2EE community observed that the use of
fine-grained remote access to entity beans was slow and unscalable. In addition, the
entity beans themselves weren’t serializable, so some other type of object was
needed to package and carry the state of the business objects between tiers.

There are now twin justifications for the use of DTOs: first, DTOs implement
externalization of data between tiers; second, DTOs enforce separation of the web tier
from the business logic tier. Only the second justification applies to us, and the
benefit of this separation is questionable when weighed against its cost. We won’t
tell you to never use DTOs (in other places, we’re sometimes less reticent). Instead,
we’ll list some arguments for and against use of the DTO pattern in an application
that uses Hibernate and ask you to carefully weigh these arguments in the context
of your own application.

It’s true that the DTO removes the direct dependency of the view on the domain
model. If your project partitions the roles of Java developer and web page designer,
this might be of some value. In particular, the DTO lets you flatten domain model
associations, transforming the data into a format that is perhaps more convenient
for the view. However, in our experience, it’s normal for all layers of the application
to be highly coupled to the domain model, with or without the use of DTOs. We
don’t see anything wrong with that, and we suggest that it might be possible to
embrace the fact.

The first clue that something is wrong with DTOs is that, contrary to their title,
they aren’t objects at all. DTOs define state without behavior. This is immediately
suspect in the context of object-oriented development. Even worse, the state
defined by the DTO is often identical to the state defined in the business objects of
the domain model—the supposed separation achieved by the DTO pattern could
also be viewed as mere duplication.

The DTO pattern exhibits two of the code smells described in Fowler [1999]: the
shotgun change smell, where a small change to some system requirement requires
changes to multiple classes; and the parallel class hierarchies smell, where two differ-
ent class hierarchies contain similar classes in a one-to-one correspondence. The

parallel class hierarchy is evident in this case—systems that use the DTO pattern

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 313

have Item and ItemDTO, User and UserDTO, and so on. The shotgun change smell
manifests itself when we add a new property to Item. We must change not only the
view and the Item class, but also the ItemDTO and the code that assembles the Item-
DTO instance from the properties of an Item (this last piece of code is especially
tedious and fragile).

Of course, DTOs aren’t all bad. The code we just referred to as “tedious and frag-
ile”—the assembler—does have some value even in the context of Hibernate. DTO
assembly provides you with a convenient point at which to ensure that all data the
view will need is fully fetched before returning control to the web tier. If you find
yourself wrestling with Hibernate LazyInitializationExceptions in the web tier,
one possible solution is to try the DTO pattern, which naturally imposes extra dis-
cipline by requiring that all needed data is copied explicitly from the business
objects (we don’t find that we need this discipline, but your experience may vary).

Finally, DTOs may have a place in data transfer between loosely coupled
applications (our discussion has focused on their use in data transfer between
tiers of the same application). However, JMS or SOAP seems to be better adapted
to this problem.

We won’t use DTOs in the CaveatEmptor application. Instead, the EJB tier ses-
sion façade will return domain model business objects to the web tier.

The session façade pattern
The session façade pattern is used in most J2EE applications today and is well known
to most Java developers [Marinescu 2002]. A session façade is an EJB session bean
that acts as the external interface to some business-oriented software component.
The use of a session bean lets you take advantage of EJB declarative transactions
and security, and provides services that are sufficiently coarse-grained that you
avoid the latency of many fine-grained interprocess calls. We won’t spend much
time discussing this pattern, since it’s well understood and noncontroversial.
Instead, we’ll demonstrate how our previous action example can be rewritten using
a session façade.

We make two major changes to our code from the previous section. First, we
change the HibernateUtil class so that the Hibernate SessionFactory is kept in
the JNDI registry rather than in a static variable. There’s no especially compel-
ling reason for this, apart from consistency with how other similar objects (such
as the JTA UserTransaction) are handled in an EJB environment. We have to
change the static initializer of the HibernateUtil class and remove the static ses-
sionFactory variable:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

314 CHAPTER 8

Writing Hibernate applications

static {
 try {
 new Configuration().configure().buildSessionFactory();
 // SessionFactory is now in JNDI, see hibernate.cfg.xml
 } catch (Throwable ex) {
 ex.printStackTrace(System.out);
 throw new ExceptionInInitializerError(ex);
 }
 }

public static SessionFactory getSessionFactory() {
 SessionFactory sessions = null;
 try {
 Context ctx = new InitialContext();
 String jndiName = "java:hibernate/HibernateFactory";
 sessions = (SessionFactory)ctx.lookup(jndiName);
 } catch (NamingException ex) {
 throw new InfrastructureException(ex);
 }
 return sessions;
}

Note that we have to use the getSessionFactory() helper method now when-
ever we need the SessionFactory—for example, in the getSession() routine.
We also have to configure Hibernate to place the SessionFactory in JNDI after
the call to buildSessionFactory(), as described in chapter 2, section 2.4.2,
“JNDI-bound SessionFactory.”

In the next step, we move some of the code from the servlet action into the bid-
ForItem() method of a new CaveatEmptorFacade session bean. This change high-
lights a limitation of the EJB specification. In our servlet-only implementation, we
were able to perform all exception and transaction handling in a servlet filter and
our utility class. A servlet filter is the servlet specification’s implementation of the
interceptor pattern. Unbelievably, the EJB specification provides no standard way to
implement interceptors for EJB method calls. Certain containers, such as JBoss and
WebLogic, provide vendor-specific interception APIs, and we encourage you to use
these facilities if portability isn’t an immediate goal. In our case, we need to dem-
onstrate code that will work with all vendors’ products, so we need to move the
tedious exception and transaction handling code into the bidForItem() method.
(In the next section, we’ll use the EJB command pattern to pull it back out again!)

The remote interface of our session façade is simple enough:

public interface CaveatEmptorFacade extends javax.ejb.EJBObject {
 public Bid bidForItem(Long userId,
 Long itemId,
 BigDecimal bidAmount)

 throws RemoteException;
}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 315

The bean implementation class is as follows:

public class CaveatEmptorFacadeBean
 implements javax.ejb.SessionBean {
 public void setSessionContext(SessionContext sessionContext)
 throws EJBException, RemoteException {}
 public void ejbRemove()
 throws EJBException, RemoteException {}
 public void ejbActivate()
 throws EJBException, RemoteException {}
 public void ejbPassivate()
 throws EJBException, RemoteException {}

 public Bid bidForItem(Long userId,
 Long itemId, BigDecimal bidAmount)
 throws RemoteException {

 Bid newBid = null;
 try {
 ItemDAO itemDAO = new ItemDAO();
 UserDAO userDAO = new UserDAO();

 BigDecimal currentMaxAmount =
 itemDAO.getMaxBidAmount(itemId);
 BigDecimal currentMinAmount =
 itemDAO.getMinBidAmount(itemId);
 Item item = itemDAO.getItemById(itemId);
 User user = userDAO.getUserById(userId)

 newBid = item.placeBid(user, newAmount,
 currentMaxAmount, currentMinAmount);

 HibernateUtil.commitTransaction();

 } finally {
 HibernateUtil.closeSession();
 }

 return newBid;
}

Note that the call to HibernateUtil.commitTransaction() might not actually com-
mit the database transaction: Hibernate transparently handles the fact that it’s run-
ning in an EJB container with JTA, so the database transaction might remain in
effect until the container commits it. However, a Hibernate Session flush occurs at
this point.

The failure of one of our business rules is indicated by throwing a BusinessEx-
ception back to the client of this session bean. A failure of an infrastructure part
of the application will throw an InfrastructureException; both will be wrapped

in an EJBException, which in turn will be sent to the client wrapped in a
RemoteException (all of this is handled by the EJB container). It will be the job of

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

316 CHAPTER 8

Writing Hibernate applications

the action (on the web tier) to interpret these wrapped exceptions and display a
meaningful message to the user. The action code therefore becomes

public void execute() {

 // Get values from request
 try {
 Context ctx = new InitialContext();
 String jndiName = "java:comp/ejb/CaveatEmptorFacade";
 CaveatEmptorFacade ejbFacade =
 (CaveatEmptorFacade) ctx.lookup(jndiName);

 Bid newBid = ejbFacade.bidForItem(userId, itemId, bidAmount);

 // Place new Bid in scope for next page

 // Forward to success page
 } catch (RemoteException ex) {

 // Get the EJBException that contains our runtime
 // Infrastructure and Business exceptions.
}
}

We will now abandon the session façade pattern and use a design based on the
command pattern, an approach that has proven to be flexible and, in some situa-
tions, better than a session façade.

The EJB command pattern
The EJB command pattern replaces the methods of a session façade—such as bid-
ForItem() in our example—with command classes. We have a BidForItemCom-
mand. The execute() method of this command is called by a stateless session bean
known as the command handler. The command handler lets you take advantage of
container transactions and security and implements generic exception handling
(it could even provide a full interceptor framework). The command itself encap-
sulates a unit of application logic, input parameters, and output parameters. It’s
instantiated by the client action, dispatched to the command handler, executed
in the context of the EJB tier, and finally returned to the client with the result of
the operation.

The command pattern lets you reduce code by handling some concerns gener-
ically and also by reducing the amount of noise involved in EJB development. The
commands are simple POJOs and are easy to write and reuse; they may even be
reused outside of the EJB container (just like the POJO domain model). The only
requirement is that commands implement the following interface:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 317

public interface Command extends Serializable {
 public void execute() throws CommandException;
}

Notice that commands must be serializable so they can be passed between tiers.
This interface defines a contract between the command and the command han-
dler. The remote interface of the command handler is simple:

public interface CommandHandler extends javax.ejb.EJBObject {
 public Command executeCommand(Command command)
 throws RemoteException, CommandException;
}

First, we implement a generic command handler with an EJB stateless session bean:

public class CommandHandlerBean
 implements javax.ejb.SessionBean {

 public void setSessionContext(SessionContext sessionContext)
 throws EJBException, RemoteException {}
 public void ejbRemove()
 throws EJBException, RemoteException {}
 public void ejbActivate()
 throws EJBException, RemoteException {}
 public void ejbPassivate()
 throws EJBException, RemoteException {}

 public Command executeCommand(Command command)
 throws RemoteException, CommandException {

 try {
 command.execute();
 } catch (CommandException ex) {
 HibernateUtil.rollbackTransaction();
 throw ex;
 }
 return command;
 }

}

You can see that this code is generic (we don’t even have to implement the session
bean methods): This handler catches any exception thrown by the command and
sets the current running container transaction to rollback state (remember that
Hibernate handles JTA transparently). If no exception occurs, the execute()
method returns the command, possibly with output parameters for the rendering
of the view. Note that we could even let the container roll back the transaction, by
not catching our application exception (CommandException). The client servlet
action implementation calling this handler is very similar to our previous version:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

318 CHAPTER 8

Writing Hibernate applications

public void execute() {

 // Get values from request

 BidForItemCommand bidForItem =
 new BidForItemCommand(userId, itemId, bidAmount);

 try {
 Context ctx = new InitialContext();
 String jndiName = "java:comp/ejb/CaveatEmptorCommandHandler";
 CommandHandler handler =
 (CommandHandler) ctx.lookup(jndiName);
 bidForItem =
 (BidForItemCommand) handler.executeCommand(bidForItem);

 // Place new Bid in scope for next page
 // bidForItem.getNewBid();

 // Forward to showSuccess.jsp page

 } catch (CommandException ex) {
 // Unwrap and forward to error page
 // ex.getCause();

 } catch (Exception ex) {
 // Throw application specific exception
 }

}

First we create a new BidForItemCommand and set the input values we got earlier
from the HTTP request. Then, after looking up the handler session bean, we exe-
cute the command. We can access the newly created Bid as one of the output
parameters of the command by calling the command’s getNewBid() accessor
method. A command is just a simple JavaBean with an additional execute()
method called by the handler:

public class BidForItemCommand
 implements Command {

 private Long userId;
 private Long itemId;
 private BigDecimal bidAmount;

 private Bid newBid;

 public BidForItemCommand(Long userId,
 Long itemId,
 BigDecimal bidAmount) {
 this.userId = userId;
 this.itemId = itemId;
 this.bidAmount = bidAmount;
 }
 public Bid getNewBid() {
 return newBid;

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Designing layered applications 319

 }

 public void execute() throws CommandException {

 try {
 ItemDAO itemDAO = new ItemDAO();
 UserDAO userDAO = new UserDAO();

 BigDecimal currentMaxAmount =
 itemDAO.getMaxBidAmount(itemId);
 BigDecimal currentMinAmount =
 itemDAO.getMinBidAmount(itemId);
 Item item = itemDAO.getItemById(itemId);
 User user = userDAO.getUserById(userId)

 newBid = item.placeBid(user, newAmount,
 currentMaxAmount, currentMinAmount);

 HibernateUtil.commitTransaction();

 } catch (InfrastructureException ex) {
 // Rethrow as a checked exception
 throw new CommandException(ex);

 } catch (BusinessException ex) {
 // Rethrow as a checked exception
 throw new CommandException(ex);

 } finally {
 HibernateUtil.closeSession();
 }
 }

}

The first few lines aren’t very interesting; we use the standard JavaBean attributes
and accessor method syntax to declare the input and output parameters of this
command. The execute() method should look familiar, because it encapsulates
the control logic and exception handling we previously had in our session bean.
You can easily extend this execute() method—for example, by querying/initializ-
ing some part of the object graph you need or by adding output parameters that
are required to render a view.

NOTE Hibernate libraries on the client—Since the BidForItemCommand needs our
DAOs, we have to include all persistence libraries on the servlet classpath
(even if the command is executed only on the business tier). This is a
serious drawback of the command pattern. One solution for this prob-
lem is to treat commands only as an input and output transport mecha-
nism and keep business logic on the server in stateless session beans.
However, this is close to the DTO (anti-) pattern, so you have to decide

what’s appropriate in your situation.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

320 CHAPTER 8

Writing Hibernate applications

Since we have just one command, the command pattern seems like more work
than the session façade pattern. However, as the system grows, adding new com-
mands is simplified because cross-cutting concerns like exception handling can be
implemented in the command handler. Commands are easy to implement and
extremely reusable (it’s easy to compose and extend commands using delegation
or inheritance). But the command pattern has other nice features. The session
bean need not be the only command handler! It’s easy to implement a JMS-based
command handler that executes commands asynchronously. You can even store a
command in the database for scheduled execution. Commands can be used out-
side the EJB environment—in a batch process or JUnit test case, for example. In
practice, this architecture works nicely.

We’ve come to the end of our discussion of layering. There are many varia-
tions on, and permutations of, the ideas we’ve shown here. We haven’t talked
about the use of Hibernate in lightweight containers such as the Spring Frame-
work or PicoContainer because, although the code looks different, the basic con-
cepts remain similar.

Our “bid for an item” use case was simple in one important respect: The appli-
cation transaction spanned just one user request and so could be implemented
using exactly one database transaction. Real application transactions might span
multiple user requests and require that the application (and database) hold state
relating to the application transaction while waiting for user response. In the next
section, we’ll show you how application transactions may be implemented in lay-
ered architectures such as the ones we just described.

8.2 Implementing application transactions

We discussed the notion of an application transaction in chapter 5, section 5.2,
“Working with application transactions.” We also discussed how Hibernate helps
detect conflicts between concurrent application transactions using managed ver-
sioning. We didn’t discuss how application transactions are used in Hibernate
applications, so we now return to this essential subject.

There are three ways to implement application transactions in an application
that uses Hibernate: using a long session, using detached objects, and doing it the hard
way. We’ll start with the hard way, since if you’ve been using EJB entity beans, the
hard way is what you’re already familiar with. First, we need a use case to illustrate
these ideas.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing application transactions 321

8.2.1 Approving a new auction

Our auction has an approval cycle. A new item is created in the Draft state. The user
who created the auction may place the item in Pending state when the user is satis-
fied with the item details. System administrators may then approve the auction,
placing the item in the Active state and beginning the auction. At any time before
the auction is approved, the user or any administrator may edit the item details.
Once the auction is approved, no user or administrator may edit the item. It’s
essential that the approving administrator sees the most recent revision of the item
details before approving the auction and that an auction can’t be approved twice.
Figure 8.1 shows the item approval cycle.

The application transaction is auction approval, which spans two user requests.
First, the administrator selects a pending item to view its details; second, the admin-
istrator approves the auction, moving the item to the Active state. The second
request must perform a version check to verify that the item hasn’t been updated
or approved since it was retrieved for display.

The business logic for approving an auction should, as usual, be implemented
by the domain model. In this case, we add an approve() method to the Item class:

public void approve(User byUser) throws BusinessException {

 if (!byUser.isAdmin())
 throw new PermissionException("Not an administrator.");

 if (!state.equals(ItemState.PENDING))
 throw new IllegalStateException("Item not pending.");

 state = ItemState.ACTIVE;
 approvedBy = byUser;
 approvalDatetime = new Date();
}

But it’s the code that calls this method that we’re interested in.

new Item
Draft

set for approval

Pending
approvechange Item Figure 8.1

State chart of the item approval

Active cycle in CaveatEmptor

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

322 CHAPTER 8

Writing Hibernate applications

FAQ Are application transactions really transactions? Most books define transac-
tion in terms of the ACID properties: atomicity, consistency, isolation, and
durability. Is an application transaction really a transaction by that defini-
tion? Consistency and durability don’t seem to be a problem, but what
about atomicity and isolation? Our example is both atomic and isolated,
since all update operations occur in the last request/response cycle (that
is, the last database transaction). However, our definition of an applica-
tion transaction permits update operations to occur in any request/
response cycle. If an application transaction performs an update opera-
tion in any but the final database transaction, it isn’t atomic and may not
even be isolated. Nevertheless, we feel that the term transaction is still
appropriate, since systems with this kind of application transaction usu-
ally have functionality or a business process that allows the user to com-
pensate for this lack of atomicity (allowing the user to roll back steps of
the application transaction manually, for example).

Now that we have our use case, let’s look at the different ways we can implement it.
We’ll start with an approach we don’t recommend.

8.2.2 Doing it the hard way

The hard way to implement application transactions is to discard all persistent
instances between each request. The justification for this approach is that, since
the database transaction is ended, the persistent instances are no longer guaran-
teed to be in a state that is consistent with the database. The longer the adminis-
trator spends deciding whether to approve the auction, the greater the risk that
some other user has edited the auction details and that the Item instance now
holds stale data.

Suppose our first request executed the following code to retrieve the auc-
tion details:

public Item viewItem(Long itemId) {
 return ItemDAO.getItemById(itemId);
}

This line of thinking would advise us to discard the returned Item after rendering
the view, storing only the identifier value for use in the next request. It seems super-
ficially reasonable that we should retrieve the Item instance again at the start of the
second request. (This is what would be done in a system that uses entity beans for
persistence.) We could then be certain that the Item held nonstale data for the
duration of the second database transaction.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing application transactions 323

There is one problem with this notion: The administrator already used the pos-
sibly stale data to arrive at the decision to approve! Reloading the Item in the sec-
ond request is useless, since the reloaded state will not be used for anything—at least,
it can’t be used in deciding whether the auction should be approved, which is the
important thing.

In order to ensure that the details that were viewed and approved by the admin-
istrator are still the current details during the second database transaction, we must
perform an explicit manual version check. The following code demonstrates how this
could be implemented in a controller servlet:

public void approveAuction(Long itemId,
 int itemVersion,
 Long adminId)
 throws BusinessException {

 Item item = new ItemDAO().getItemById(itemId);

 if (!(itemVersion==item.getVersion()))
 throw new StaleItemException();

 User admin = new UserDAO().getUserById(adminId);
 item.approve(admin);
}

In this case, the manual version check isn’t especially difficult to implement.
Are we justified in calling this approach hard? In more complex cases involving

relationships, it’s tedious to perform all the checks manually for all objects that are
to be updated. These manual version checks should be considered noise—they
implement a purely systemic concern not expressed in the business problem.

More important, the previous code snippet contains other unnecessary noise.
We already retrieved the Item and User in previous requests. Is it necessary to
reload them in each request? It should be possible to simplify our control code to
the following:

public approveAuction(Item item, User admin)
 throws BusinessException {
 item.approve(admin);
}

Doing so not only saves three lines of code, but is also arguably more object ori-
ented—our system is working mainly with domain model instances instead of pass-
ing around identifier values. Furthermore, this code would be quicker, since it
saves two SQL SELECT queries that uselessly reload data. How can we achieve this
simplification using Hibernate?
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

324 CHAPTER 8

Writing Hibernate applications

8.2.3 Using detached persistent objects

Suppose we kept the Item as a detached instance, storing it in the user’s HTTP ses-
sion, for example. We could reuse it in the second database transaction by reasso-
ciating it with the new Hibernate session using either lock() or update(). Let’s see
what these two options look like.

In the case of lock(), we adjust the approveAuction() method to look like this:

public void approveAuction(Item item, User admin)
 throws BusinessException {
 try {

 HibernateUtil.getSession().lock(item, LockMode.NONE);

 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }

 item.approve(admin);
}

The call to Session.lock() reassociates the item with the new Hibernate session
and ensures that any subsequent change to the state of the item is propagated to
the database when the session is flushed (for a discussion of the different Lock-
Modes, see chapter 5, section 5.1.7, “Using pessimistic locking”). Since Item is ver-
sioned (if we map a <version> property), Hibernate will check the version number
when synchronizing with the database, using the mechanism described in
chapter 5, section 5.2.1, “Using managed versioning.” You therefore don’t have to
use a pessimistic lock, as long as it would be allowed for concurrent transactions to
read the item in question while the approval routine runs.

Of course, it would be better to hide Hibernate code in a new DAO method, so
we add a new lock() method to the ItemDAO. This allows us to simplify the
approveAuction() method to

public approveAuction(Item item, User admin)
 throws BusinessException {
 new ItemDAO().lock(item,false); // Don’t be pessimistic
 item.approve(admin);
}

Alternatively, we could use update(). For our example, the only real difference is
that update() may be called after the state of the item has been modified, which
would be the case if the administrator made changes before approving the auction:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing application transactions 325

public approveAuction(Item item, User admin)
 throws BusinessException {
 item.approve(admin);
 new ItemDAO().saveOrUpdate(item);
}

The new saveOrUpdate() method of ItemDAO calls HibernateUtil.getSes-

sion().saveOrUpdate(item). Again, Hibernate will perform a version check when
updating the item.

Is this implementation, using detached objects really any simpler than the hard
way? We still need an explicit call to the ItemDAO, so the point is arguable. In a more
complex example involving associations, we’d see more benefit, since the call to
lock() or update() might cascade to associated instances. And let’s not forget that
this implementation is more efficient, avoiding the unnecessary SELECTs.

But we’re still not satisfied. Is there a way to avoid the need for explicit reasso-
ciation with a new session? One way would be to use the same Hibernate session
for both database transactions, a pattern we described in chapter 5 as session-per-
application-transaction.

8.2.4 Using a long session

A long session is a Hibernate session that spans a whole application transaction,
allowing reuse of persistent instances across multiple database transactions. This
approach avoids the need to reassociate detached instances created or retrieved in
previous database transactions.

A session contains two important kinds of state: It holds a cache of persistent
instances and a JDBC Connection. We’ve already stressed the importance of not
holding database resources open across multiple requests. Therefore, the session
needs to release its connection between requests, if you intend to keep it open for
more than one request.

The disconnect() method releases the session’s JDBC connection without clos-
ing the session; the reconnect() method acquires a new connection for the same
session. These methods let you have a session that spans multiple requests (a long
session) without tying up expensive resources.

Currently, we’re storing the session only in a ThreadLocal. Since each request is
processed in a different thread, and since the session is now to be reused in multi-
ple requests, we need a different solution. In a servlet-only environment, the per-
fect place to keep a reference to the Hibernate session between requests is in an
HttpSession attribute.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

326 CHAPTER 8

Writing Hibernate applications

It’s simple to change the Hibernate servlet filter we wrote earlier to disconnect
the Session between requests instead of completely closing it. This filter is also the
best place to handle reconnection of the Session. The new doFilter() method is
shown in listing 8.6. (Note that our example uses a servlet filter, but the same ideas
are applicable to any other kind of interceptor.)

public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {

 // Try to get a Hibernate Session from the HttpSession
 HttpSession userSession =
 ((HttpServletRequest) request).getSession();
 Session hibernateSession =
 (Session) userSession.getAttribute("HibernateSession");

 // and reconnect it to the current thread
 if (hibernateSession != null)
 HibernateUtil.reconnect(hibernateSession);

 try {
 chain.doFilter(request, response);

 // Commit any pending database transaction.
 HibernateUtil.commitTransaction();

 } finally {

 // Disconnect the Session
 hibernateSession = HibernateUtil.disconnectSession();

 // and store it in the user's HttpSession
 userSession.setAttribute("HibernateSession", hibernateSession);
 }
}

Instead of closeSession(), we call disconnectSession() in the finally block.
Before running the filter chain, we check whether the user session contains an
existing Hibernate Session and, if found, reconnect() it and associate it with the
current thread. The disconnect and reconnect operations detach the Hibernate ses-
sion from the old and attach it to a new JDBC Connection.

Unfortunately, this implementation never closes the Hibernate session. Our
Hibernate session has the same lifespan as the user session. So, all subsequent

Listing 8.6 The doFilter() method for long sessions
application transactions will reuse the same Hibernate session. This session

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing application transactions 327

holds a cache of persistent instances that grows increasingly stale over time; this
is unacceptable.

At the beginning of each new application transaction, we do need to ensure that
we have a completely clean Hibernate session. We need a new method to demar-
cate the beginning of an application transaction. This method must close the exist-
ing session and open a new one. Together with the disconnect() and reconnect()
methods, we add the newApplicationTx() method to the HibernateUtil class:

public static void reconnect(Session session)
 throws InfrastructureException {
 try {
 session.reconnect();
 threadSession.set(session);
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
}

public static Session disconnectSession()
 throws InfrastructureException {

 Session session = getSession();
 try {
 threadSession.set(null);
 if (session.isConnected() && session.isOpen())
 session.disconnect();
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
 return session;
}

public static void newApplicationTx() {
 closeSession();
}

We must call the newApplicationTx() method at the beginning of the application
transaction, just before the item for approval is shown to the administrator (before
viewItem(itemId) in a controller servlet is called):

HibernateUtil.newApplicationTx();
viewItem(itemId);

Our viewItem() method would remain, as ever:

public Item viewItem(Long itemId) {
 return ItemDAO.getItemById(itemId);
}

And, as promised, the approveAuction() method now finally simplifies as follows:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

328 CHAPTER 8

Writing Hibernate applications

public approveAuction(Item item, User admin)
 throws BusinessException {
 item.approve(admin);
}

More complex application transactions sometimes make changes to the domain
model in several sequential requests. Since the session is flushed by our interceptor
at the end of each request, the application transaction would be nonatomic if data
was written in a request in the middle. In applications that require recovery of
incomplete application transactions in the case of a system failure, this is correct.
However, other applications require atomicity, and hence changes should be
flushed to the database only on the final request. This is easy to implement using
detached objects but not as natural with the long session approach.

The solution is to set the Hibernate session to FlushMode.NEVER and explicitly
flush it at the end of the application transaction. All changes are held in memory
(actually, in the users HttpSession) until the explicit flush. Note that queries won’t
be aware of these unflushed changes and might return stale data.

There’s one final complication relating to the long session approach. A Hiber-
nate Session isn’t threadsafe, and the servlet engine allows multiple requests from
the same user to be processed concurrently. So, it’s possible that two concurrent
requests could obtain the same Hibernate Session from the HttpSession if, for
example, the user clicked a submit button twice. This would result in unpredict-
able behavior. This problem also affects the previous approach, where we used
detached objects, since detached objects also aren’t threadsafe. Indeed, this prob-
lem affects any web application that keeps mutable state in the HttpSession.

Since this is a generic problem that affects almost all web applications, we’ll
leave it to you to find an appropriate solution. A good solution for some applica-
tions might be to reject any new request if a request is already being processed for
the same user. You could easily implement this approach in a servlet filter. Other
applications might need to serialize requests from the same user (which can be
achieved by synchronizing on the HttpSession object in a servlet filter).

Still other applications (multiwindow applications, for example) may need to
support multiple concurrent application transactions. In this case, the application
might allocate more than one long session to each user, with some mapping
between the window that was the source of a request and the long session that ser-
vices the associated application transaction.

This worked nicely for our servlet-only architecture. But what about EJB applica-
tions? If the Hibernate Session is accessed only from the EJB tier, storing it in the

user session in the web tier isn’t an option. More generally, when are each of the
three application transaction approaches we’ve discussed relevant?

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Implementing application transactions 329

8.2.5 Choosing an approach to application transactions

You can probably guess from the fact that we called something the hard way that
we don’t think it’s a good technique. We wouldn’t use this approach in our own
applications. However, if your architecture specifies that the web tier should never
access the domain model directly (and so the domain model is completely hidden
from the presentation layer behind an intermediate DTO abstraction layer), and if
you’re unable to keep state associated with the user in the EJB tier (you’re using
only stateless session beans), then you have essentially no other choice. It’s possible
to build Hibernate applications this way, and Hibernate was designed to support
this approach. At least this approach frees you from having to consider the differ-
ence between persistent and detached instances, and it eliminates the possibility of
LazyInitializationExceptions thrown by detached objects.

Currently, most Hibernate applications choose the detached objects approach,
with a new session per database transaction. In particular, this is the method of
choice for an application where business logic and data access execute in the EJB
tier but where the domain model is also used in the web tier, avoiding the need for
tedious DTOs. This approach is even being used successfully in servlet-only appli-
cations. We’re inclined to think that it isn’t the best approach for servlet-only appli-
cations, however.

Instead, we’d use the long session approach in the case of a servlet-only applica-
tion. So far, we’ve found this approach difficult to explain, and it isn’t well under-
stood in the Hibernate community. We suppose this is because the notion of an
application transaction isn’t well understood in the Java community, and most
developers aren’t used to thinking about problems in terms of application transac-
tions. We hope this situation changes soon, because this idea is useful even if you
don’t use the long session approach.

If you want to use long sessions in an EJB application, you need to find a way to
associate a Hibernate session with a particular user without leaving the EJB tier. But
should you be keeping state associated with users in the EJB tier at all? This kind of
practice is usually frowned on.

As far as we can see, there is no a priori reason why it should be less efficient to
keep state associated with a user session in the business tier than in the web tier.
On the contrary, it looks as if it would be much more efficient to keep state associ-
ated with the application transaction right there in the middle tier where it
belongs, rather than serializing it to and from the database and/or web tier in each
request. The EJB specification provides stateful session beans for precisely this pur-
pose. A stateful bean could store a Hibernate session in an instance variable, dis-

connecting the session between requests. However, many application servers are

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

330 CHAPTER 8

Writing Hibernate applications

known to implement inefficient stateful session bean support. You have to evaluate
your vendor and product before using this approach.

Our discussion about basic application design is now finished. Let’s turn to
more exotic problems that usually occur when you have to handle legacy or other
special kinds of data.

8.3 Handling special kinds of data

Some data requires special treatment in addition to the general principles we’ve
discussed in the rest of the book. In this section, we’ll describe important kinds of
data that introduce extra complexity into your Hibernate code.

The first and most important problem is legacy data. Relatively few projects have
the luxury of working completely from scratch with a brand-new database; most
applications share data with existing legacy applications. In this case, it’s difficult
to change the database schemas, and your new application may be forced to work
with a data model that is less than optimal from your point of view. It’s even possi-
ble to find yourself tied to a legacy database with such a crazy design that use of
Hibernate is impossible (this is exceedingly rare, however).

A second interesting case is data that is auditable. Any change to auditable data
requires that the change be recorded in the database along with the date and time
when the change was made and the name of the user who made the change. Hiber-
nate has special facilities for implementing audit logs (and other similar aspects
that require a persistence event mechanism).

Let’s first look at legacy data mappings and some of the resulting application
design issues.

8.3.1 Legacy schemas and composite keys

When your application inherits an existing legacy database schema, you want to
make as few changes to the existing schema as possible. Every change you make
could break other existing applications that access the database and require expen-
sive migration of existing data. In general, it isn’t possible to build a new applica-
tion and make no changes to the existing data model—a new application usually
means additional business requirements that naturally require evolution of the
database schema.

We’ll therefore consider two types of problems: problems that relate to chang-
ing business requirements (which generally can’t be solved without schema

changes) and problems that relate only to how you wish to represent the same

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 331

business problem in your new application (which can usually—but not always—be
solved without database schema changes). You can usually spot the first kind of
problem by looking at the logical data model. The second type more often relates
to the implementation of the logical data model as a physical database schema.

If you accept this observation, you’ll see that the kinds of problems that require
schema changes are those that call for addition of new entities, refactoring of exist-
ing entities, addition of new attributes to existing entities, and modification of the
associations between entities. The problems that can be solved without schema
changes usually involve inconvenient column definitions for a particular entity.

Let’s now concentrate on the second kind of problems. These inconvenient col-
umn definitions most commonly fall into two categories:

■ Use of natural (especially composite) keys

■ Inconvenient column types

We’ve mentioned that we think natural primary keys are a bad idea. Natural keys
often make it difficult to refactor the data model when business requirements
change. They may even, in extreme cases, impact performance. Unfortunately,
many legacy schemas use (natural) composite keys heavily, and, for the very rea-
son that we discourage the use of composite keys, it may be difficult to change the
legacy schema to use surrogate keys. Therefore, Hibernate supports the use of
natural keys. If the natural key is a composite key, support is via the <composite-
id> mapping.

The second category of problems can usually be solved using a custom Hiber-
nate mapping type (a UserType or CompositeUserType), as described in chapter 6.

Let’s look at some examples that illustrate the solutions for both problems. We’ll
start with natural key mappings.

Mapping a table with a natural key
Our USER table has a synthetic primary key, USER_ID, and a unique key constraint
on USERNAME. Here’s a portion of our Hibernate mapping:

<class name="User" table="USER">
 <id name="id" column="USER_ID" unsaved-value="null">
 <generator class="native"/>
 </id>

 <version name="version"
 column="VERSION"/>
 <property name="username"
 column="USERNAME"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

332 CHAPTER 8

Writing Hibernate applications

 unique="true"
 not-null="true"/>
 ...
</class>

Notice that a synthetic identifier mapping may specify an unsaved-value, allowing
Hibernate to determine whether an instance is a detached instance or a new tran-
sient instance. Hence, the following code snippet may be used to create a new per-
sistent user:

User user = new User();
user.setUsername("john");
user.setFirstname("John");
user.setLastname("Doe");
session.saveOrUpdate(user); // Generates id value by side-effect
System.out.println(session.getIdentifier(user)); // Prints 1
session.flush();

If you encountered a USER table in a legacy schema, USERNAME would probably be
the primary key. In this case, we would have no synthetic identifier; instead, we’d
use the assigned identifier generator strategy to indicate to Hibernate that the
identifier is a natural key assigned by the application before the object is saved:

<class name="User" table="USER">
 <id name="username" column="USERNAME">
 <generator class="assigned"/>
 </id>

 <version name="version"
 column="VERSION"
 unsaved-value="0"/>
 ...
</class>

We removed the unsaved-value attribute from the <id> mapping. An assigned iden-
tifier can’t be used to determine whether an instance is detached or transient—
since it’s assigned by the application, it’s never null. Instead, we specify an unsaved-
value mapping for the <version> property. Doing so achieves the same effect by
essentially the same mechanism. The code to save a new User isn’t changed:

User user = new User();
user.setUsername("john"); // Assign a primary key value
user.setFirstname("John");
user.setLastname("Doe");
session.saveOrUpdate(user); // Will save, since version is 0
System.out.println(session.getIdentifier(user)); // Prints "john"
session.flush();
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 333

If a class with a natural key does not declare a version or timestamp property, it’s
more difficult to get saveOrUpdate() and cascades to work correctly. You might use
a custom Hibernate Interceptor as discussed later in this chapter. (On the other
hand, if you’re happy to use explicit save() and explicit update() instead of save-
OrUpdate() and cascades, Hibernate doesn’t need to be able to distinguish
between transient and detached instances; so, you can safely ignore this advice.)

Composite natural keys extend the same ideas.

Mapping a table with a composite key
As far as Hibernate is concerned, a composite key may be handled as an assigned
identifier of value type (the Hibernate type is a component). Suppose the pri-
mary key of our user table consisted of a USERNAME and an ORGANIZATION_ID. We
could add a property named organizationId to the User class and use the follow-
ing mapping:

<class name="User" table="USER">

 <composite-id>
 <key-property name="username"
 column="USERNAME"/>

 <key-property name="organizationId"
 column="ORGANIZATION_ID"/>
 </composite-id>

 <version name="version"
 column="VERSION"
 unsaved-value="0"/>
 ...
</class>

The code to save a new User would look like this:

User user = new User();

// Assign a primary key value
user.setUsername("john");
user.setOrganizationId(42);

// Set property values
user.setFirstname("John");
user.setLastname("Doe");
session.saveOrUpdate(user); // will save, since version is 0
session.flush();

But what object could we use as the identifier when we called load() or get()? It’s
possible to use an instance of the User; for example:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

334 CHAPTER 8

Writing Hibernate applications

User user = new User();

// Assign a primary key value
user.setUsername("john");
user.setOrganizationId(42);

// Load the persistent state into user
session.load(User.class, user);

In this code snippet, User acts as its own identifier class. Note that we now have to
implement Serializable and equals()/hashCode() for this class. It’s much more
elegant to define a separate composite identifier class that declares just the key prop-
erties. We call this class UserId:

public class UserId extends Serializable {
 private String username;
 private String organizationId;

 public UserId(String username, String organizationId) {
 this.username = username;
 this.organizationId = organizationId;
 }

 // Getters...

 public boolean equals(Object o) {
 if (this == o) return true;
 if (o = null) return false;
 if (!(o instanceof UserId)) return false;
 final UserId userId = (UserId) o;
 if (!organizationId.equals(userId.getOrganizationId()))
 return false;
 if (!username.equals(userId.getUsername()))
 return false;
 return true;

 }

 public int hashCode() {
 return username.hashCode();
)
}

It’s critical that we implement equals() and hashCode() correctly, since Hibernate
uses these methods to do cache lookups. Composite key classes are also expected
to implement Serializable.

Now, we’d remove the userName and organizationId properties from User and
add a userId property. We’d use the following mapping:
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 335

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="userName"
 column="USERNAME"/>

 <key-property name="organizationId"
 column="ORGANIZATION_ID"/>
 </composite-id>

 <version name="version"
 column="VERSION"
 unsaved-value="0"/>
 ...
 </class>

We could save a new instance using this code:

UserId id = new UserId("john", 42);

User user = new User();

// Assign a primary key value
user.setUserId(id);

// Set property values
user.setFirstname("John");
user.setLastname("Doe");

session.saveOrUpdate(user); // will save, since version is 0
session.flush();

The following code shows how to load an instance:

UserId id = new UserId("john", 42);

User user = (User) session.load(User.class, id);

Now, suppose the ORGANIZATION_ID was a foreign key to the ORGANIZATION table,
and that we wished to represent this association in our Java model. Our recom-
mended way to do this is to use a <many-to-one> association mapped with
insert="false" update="false", as follows:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="userName"
 column="USERNAME"/>

 <key-property name="organizationId"
 column="ORGANIZATION_ID"/>
 </composite-id>
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

336 CHAPTER 8

Writing Hibernate applications

 <version name="version"
 column="VERSION"
 unsaved-value="0"/>

 <many-to-one name="organization"
 class="Organization"
 column="ORGANIZATION_ID"
 insert="false" update="false"/>
 ...
</class>

This use of insert="false" update="false" tells Hibernate to ignore that prop-
erty when updating or inserting a User, but we may of course read it with
john.getOrganization().

An alternative approach is to use a <key-many-to-one>:

<class name="User" table="USER">

 <composite-id name="userId" class="UserId">
 <key-property name="userName"
 column="USERNAME"/>

 <key-many-to-one name="organization"
 class="Organization"
 column="ORGANIZATION_ID"/>
 </composite-id>

 <version name="version"
 column="VERSION"
 unsaved-value="0"/>
 ...
</class>

However, it’s usually inconvenient to have an association in a composite identifier
class, so this approach isn’t recommended except in special circumstances.

Since USER has a composite primary key, any referencing foreign key is also com-
posite. For example, the association from Item to User (the seller) is now mapped
to a composite foreign key. To our relief, Hibernate can hide this detail from the
Java code. We can use the following association mapping for Item:

<many-to-one name="seller" class="User">
 <column name="USERNAME"/>
 <column name="ORGANIZATION_ID"/>
</many-to-one>

Any collection owned by the User class will also have a composite foreign key—for
example, the inverse association, items, sold by this user:

<set name="items" lazy="true" inverse="true">

 <key>
 <column name="USERNAME"/>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 337

 <column name="ORGANIZATION_ID"/>
 </key>
 <one-to-many class="Item"/>
</set>

Note that the order in which columns are listed is significant and should match the
order in which they appear inside the <composite-id> element.

Let’s turn to our second legacy schema problem, inconvenient columns.

Using a custom type to map legacy columns
The phrase inconvenient column type covers a broad range of problems: for exam-
ple, use of the CHAR (instead of VARCHAR) column type, use of a VARCHAR column to
represent numeric data, and use of a special value instead of an SQL NULL. It’s
straightforward to implement a UserType to handle legacy CHAR values (by trim-
ming the String returned by the JDBC driver), to perform type conversions
between numeric and string data types, or to convert special values to a Java null.
We won’t show code for any of these common problems; we’ll leave that to you—
they’re all easy if you study chapter 6, section 6.1.3, “Creating custom mapping
types” carefully.

We’ll look at a slightly more interesting problem. So far, our User class has two
properties to represent a user’s names: firstname and lastname. As soon as we add
an initial, our User class will become messy. Thanks to Hibernate’s component
support, we can easily improve our model with a single name property of a new Name
Java type (which encapsulates the details).

Also suppose that there is a single NAME column in the database. We need to map
the concatenation of three different properties of Name to one column. The follow-
ing UserType demonstrates how this can be accomplished (we make the simplifying
assumption that the initial is never null):

public class NameUserType implements UserType {

 private static final int[] TYPES = { Types.VARCHAR };
 public int[] sqlTypes() { return TYPES; }
 public Class returnedClass() { return Name.class; }

 public boolean isMutable() {
 return true;
 }

 public Object deepCopy(Object value) throws HibernateException {
 Name name = (Name) value;
 return new Name(name.getFirstname(),
 name.getInitial(),

 name.getLastname());
 }

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

338 CHAPTER 8

Writing Hibernate applications

 public boolean equals(Object x, Object y)
 throws HibernateException {
 // use equals() implementation on Name class
 return x==null ? y==null : x.equals(y);
 }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {

 String dbName =
 (String) Hibernate.STRING.nullSafeGet(resultSet, names);

 if (dbName==null) return null;

 StringTokenizer tokens = new StringTokenizer(dbName);
 Name realName =
 new Name(tokens.nextToken(),
 String.valueOf(tokens.nextToken().charAt(0)),
 tokens.nextToken());
 return realName;
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {

 Name name = (Name) value;

 String nameString = (name==null) ?
 null :
 name.getFirstname()
 + ' ' + name.getInitial()
 + ' ' + name.getLastname();
 Hibernate.STRING.nullSafeSet(statement, nameString, index);
 }

}

Notice that this UserType delegates to one of the Hibernate built-in types for some
functionality. This is a common pattern, but it isn’t a requirement.

We hope you can now see how many different kinds of problems having to do
with inconvenient column definitions can be solved by clever user of Hibernate
custom types. Remember that every time Hibernate reads data from a JDBC
ResultSet or writes data to a JDBC PreparedStatement, it goes via a Type. In almost
every case, that Type could be a custom type. (This includes associations—a Hiber-
nate ManyToOneType, for example, delegates to the identifier type of the associated
class, which might be a custom type.)
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 339

One further problem often arises in the context of working with legacy data:
integrating database triggers.

Working with triggers
There are some reasonable motivations for using triggers even in a brand-new data-
base, so legacy data isn’t the only context in which problems arise. Triggers and
ORM are often a problematic combination. It’s difficult to synchronize the effect
of a trigger with the in-memory representation of the data.

Suppose the ITEM table has a CREATED column mapped to a CREATED property of
type Date, which is initialized by an insert trigger. The following mapping is
appropriate:

<property name="created"
 type="timestamp"
 column="CREATED"
 insert="false"
 update="false"/>

Notice that we map this property insert="false" update="false" to indicate that
it isn’t to be included in SQL INSERTs or UPDATEs.

After saving a new Item, Hibernate won’t be aware of the value assigned to this
column by the trigger, since it occurs after the INSERT or the item row. If we need
to use the value in our application, we have to tell Hibernate explicitly to reload
the object with a new SQL SELECT. For example:

Item item = new Item();
...
HibernateUtil.beginTransaction();
Session session = HibernateUtil.getSession();

session.save(item);
session.flush(); // Force the INSERT to occur
session.refresh(item); // Reload the object with a SELECT

System.out.println(item.getCreated());

HibernateUtil.commitTransaction();
HibernateUtil.closeSession();

Most problems involving triggers may be solved this way, using an explicit flush()
to force immediate execution of the trigger, perhaps followed by a call to
refresh() to retrieve the result of the trigger.

You should be aware of one special problem when you’re using detached objects
with a database with triggers. Since no snapshot is available when a detached object

is reassociated with a session using update() or saveOrUpdate(), Hibernate may
execute unnecessary SQL UPDATE statements to ensure that the database state is

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

340 CHAPTER 8

Writing Hibernate applications

completely synchronized with the session state. This may cause an UPDATE trigger
to fire inconveniently. You can avoid this behavior by enabling select-before-
update in the mapping for the class that is persisted to the table with the trigger. If
the ITEM table has an update trigger, we can use the following mapping:

<class name="Item"
 table="ITEM"
 select-before-update="true">
 ...
</class>

This setting forces Hibernate to retrieve a snapshot of the current database state
using an SQL SELECT, enabling the subsequent UPDATE to be avoided if the state of
the in-memory Item is the same.

Let’s summarize our discussion of legacy data models: Hibernate offers several
strategies to deal with (natural) composite keys and inconvenient columns. How-
ever, our recommendation is that you carefully examine whether a schema
change is possible. In our experience, many developers immediately dismiss data-
base schema changes as too complex and time-consuming, and they look for a
Hibernate solution. Sometimes this opinion isn’t justified, and we urge you to
consider schema evolution as a natural part of your data’s lifecycle. If making
table changes and exporting/importing data solves the problem, one day of work
might save many days in the long run—when many workarounds and special
cases become a burden.

We’ll now look more closely at audit logging and tracking object state changes
in the database.

8.3.2 Audit logging

An audit log is a database table that contains information about changes made to
other data, specifically about the event that results in the change. For example, we
might record information about creation and update events for auction Items. The
information that’s recorded usually includes the user, the date and time of the
event, what type of event occurred, and the item that was changed.

Audit logs are often handled using database triggers, and we think this is an
excellent approach. However, it’s sometimes better for the application to take
responsibility, especially if portability between different databases is required.

You need to perform several steps to implement audit logging:

1 Mark the persistent classes for which you want to enable logging.

2 Define the information that should be logged: user, date, time, type of mod-

ification, and so on.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 341

3 Tie it all together with a Hibernate Interceptor that automatically creates
the audit trail for you.

Creating the marker interface
We first create a marker interface, Auditable. We use this interface to mark all per-
sistent classes that should be automatically audited:

package org.hibernate.auction.model;

public interface Auditable {
 public Long getId();
}

This interface requires that a persistent entity class expose its identifier with a get-
ter method; we need this property to log the audit trail. Enabling audit logging for
a particular persistent class is then trivial; we just add it to the class declaration.
Here’s an example, for Item:

public class Item implements Serializable, Auditable {
 ...
}

Creating and mapping the log record
Now we create a new persistent class, AuditLogRecord. This class represents the
information we want to log in the audit database table:

public class AuditLogRecord {

 public String message;
 public Long entityId;
 public Class entityClass;
 public Long userId;
 public Date created;

 AuditLogRecord() {}

 public AuditLogRecord(String message,
 Long entityId,
 Class entityClass,
 Long userId) {
 this.message = message;
 this.entityId = entityId;
 this.entityClass = entityClass;
 this.userId = userId;
 this.created = new Date();
 }
}

You shouldn’t consider this class part of your domain model. Hence you don’t

need to be as cautious about exposing public attributes. The AuditLogRecord is

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

342 CHAPTER 8

Writing Hibernate applications

part of your persistence layer and possibly shares the same package with other per-
sistence-related classes, such as HibernateUtil or your custom mapping types.

Next, we map this class to the AUDIT_LOG database table:

<hibernate-mapping>

<class name="org.hibernate.auction.persistence.audit.AuditLogRecord"
 table="AUDIT_LOG"
 mutable="false">

 <id type="long" column="AUDIT_LOG_ID">
 <generator class="native"/>
 </id>

 <property name="message" column="MESSAGE"
 not-null="true" access="field"/>

 <property name="entityId" column="ENTITY_ID"
 not-null="true" access="field"/>

 <property name="entityClass" column="ENTITY_CLASS"
 not-null="true" access="field"/>

 <property name="userId" column="USER_ID"
 not-null="true" access="field"/>

 <property name="created" column="CREATED"
 type="java.util.Date" not-null="true"
 access="field"/>

</class>

</hibernate-mapping>

We marked the class mutable="false", since AuditLogRecords are immutable,
Hibernate will now no longer update the record, even if you try to. Note that we
don’t declare an identifier property in the class; Hibernate will therefore manage
the surrogate key of an AuditLogRecord internally.

The audit logging concern is somewhat orthogonal to the business logic that
causes the loggable event. It’s possible to mix logic for audit logging with the busi-
ness logic, but in many applications it’s preferable that audit logging be handled
in a central piece of code, transparently to the business logic.We wouldn’t manu-
ally create a new AuditLogRecord and save it whenever an Item is modified.

Hibernate offers an extension point, so you can plug in an audit-log routine
(or any other similar event listener). This extension is known as a Hibernate
Interceptor.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 343

Writing an interceptor
We’d prefer that a logEvent() method be called automatically when we call save().
The best way to do this with Hibernate is to implement the Interceptor interface.
Here’s an example:

public class AuditLogInterceptor implements Interceptor {

 private Session session;
 private Long userId;

 private Set inserts = new HashSet();
 private Set updates = new HashSet();

 public void setSession(Session session) {
 this.session=session;
 }
 public void setUserId(Long userId) {
 this.userId=userId;
 }

 public boolean onSave(Object entity,
 Serializable id,
 Object[] state,
 String[] propertyNames,
 Type[] types)
 throws CallbackException {

 if (entity instanceof Auditable)
 inserts.add(entity);

 return false;
 }

 public boolean onFlushDirty(Object entity,
 Serializable id,
 Object[] currentState,
 Object[] previousState,
 String[] propertyNames,
 Type[] types)
 throws CallbackException {

 if (entity instanceof Auditable)
 updates.add(entity);

 return false;
 }

 public void postFlush(Iterator iterator)
 throws CallbackException {
 try {
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

344 CHAPTER 8

Writing Hibernate applications

 for (Iterator it = inserts.iterator(); it.hasNext();) {
 Auditable entity = (Auditable) it.next();
 AuditLog.logEvent("create",
 entity,
 userId,
 session.connection());
 }
 for (Iterator it = updates.iterator(); it.hasNext();) {
 Auditable entity = (Auditable) it.next();
 AuditLog.logEvent("update",
 entity,
 userId,
 session.connection());
 }
 } catch (HibernateException ex) {
 throw new CallbackException(ex);
 } finally {
 inserts.clear();
 updates.clear();
 }
 }
...
}

The Hibernate Interceptor API has many more methods than are shown in this
example. We assume you’ll implement them with default semantics (that is, you’ll
usually return false or null, following the API documentation).

This particular interceptor has two interesting aspects. First, the session and
userId are attributes this interceptor needs to do its work, so a client using this
interceptor will have to set both properties when enabling the interceptor. The
other interesting aspect is the audit log routine in onSave() and onFlushDirty(),
where we add new and updated entities to collections. The onSave() interceptor
method is called whenever Hibernate saves an entity; the onFlushDirty() method
is called whenever Hibernate detects a dirty object. The audit logging is done in
the postFlush() method, which Hibernate calls after executing the synchroniza-
tion SQL. We use the static call AuditLog.logEvent() (a class and method we dis-
cuss next) to log the event. Note that we can’t log events in onSave(), because the
identifier value of a new entity might not be known at this point. Hibernate is guar-
anteed to have set all entity identifiers after flushing, so postFlush() is a good place
to perform audit logging.

Also note how we use the session: We pass the JDBC connection of a given Ses-
sion to the static call to AuditLog.logEvent(). There is a good reason for doing
this, as we’ll discuss in more detail. Let’s first tie it all together and see how you

enable the new interceptor.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Handling special kinds of data 345

Enabling the interceptor
You need to assign the Interceptor to a Hibernate Session when you first open
the session:

Interceptor interceptor = new AuditLogInterceptor();

Session session =
 HibernateUtil.getSessionFactory().openSession(interceptor);
Transaction tx = session.beginTransaction();

interceptor.setSession(session);
interceptor.setUserId(currentUser.getId());

session.save(newItem); // Triggers onSave() of the Interceptor

tx.commit(); // Triggers postFlush() of the Interceptor
session.close();

Note that we no longer use HibernateUtil.getSession(), and so on, in this exam-
ple. If we get a Session from HibernateUtil, it won’t have the interceptor enabled.
Therefore, we get the SessionFactory and manage the Session ourselves, as we did
before we had HibernateUtil. However, it’s straightforward to enhance the Hiber-
nateUtil class with interceptor handling. We leave this as an exercise for you: Try
adding a HibernateUtil.registerInterceptor() method that holds the currently
active Interceptor in a thread-local variable.

Let’s get back to that interesting Session-handling code inside the intercep-
tor and find out why we passed the connection() of the current Session to
AuditLog.logEvent().

Using a temporary Session
It should be clear why we require a Session inside the AuditLogInterceptor. The
interceptor has to create and persist AuditLogRecord objects, so a first attempt for
the onSave() method could have been the following routine:

if (entity instanceof Auditable) {
 try {

 AuditLogRecord logRecord = new AuditLogRecord(...);
 // ... set the log information

 session.save(logRecord);
 } catch (HibernateException ex) {
 throw new CallbackException(ex);
 }
}

This seems straightforward: create a new AuditLogRecord instance and save it,

using the current Session. However, it doesn’t work.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

346 CHAPTER 8

Writing Hibernate applications

It’s illegal to invoke the original Hibernate Session from an Interceptor call-
back. The session is in a fragile state during interceptor calls. A nice trick that
avoids this issue is to open a new Session for the sole purpose of saving a single
AuditLogRecord object. To keep this as fast as possible, you reuse the JDBC connec-
tion from the original Session.

This temporary session handling is encapsulated in the AuditLog helper class:

public class AuditLog {

 public static void logEvent(
 String message,
 Auditable entity,
 Long userId,
 Connection connection)
 throws CallbackException {

 Session tempSession =
 HibernateUtil.getSessionFactory().openSession(connection);

 try {
 AuditLogRecord record =
 new AuditLogRecord(message,
 entity.getId(),
 entity.getClass(),
 userId);

 tempSession.save(record);
 tempSession.flush();
 } catch (Exception ex) {
 throw new CallbackException(ex);

 } finally {
 try {
 tempSession.close();
 } catch (HibernateException ex) {
 throw new CallbackException(ex);
 }
 }
 }
}

Note that this method never commits or starts any database transactions; all it
does is execute additional INSERT statements on an existing JDBC connection and
inside the current database transaction. Using a temporary Session for some
operations on the same JDBC connection and transaction is a nice trick you may
also find useful in other scenarios.

We encourage you to experiment and try different interceptor design pat-

terns. For example, you could redesign the auditing mechanism to log any
entity, not only Auditable. The Hibernate website also has examples using

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 347

nested interceptors or logging a complete history (including updated property
and collection information) for an entity.

8.4 Summary

This chapter focused on application design and special cases you may encounter
in your daily work writing Hibernate applications. We first talked about application
design in a simple servlet-based scenario. The HibernateUtil helper class is essen-
tial to our layered application design, cleanly separating SessionFactory, Session,
and Hibernate exception handling from other concerns of our application. We
then showed the advantages of “smart” domain models by implementing business
logic in the CaveatEmptor Item class.

We used the DAO pattern to create a façade for the persistence layer, hiding
Hibernate internals from control, presentation, and business logic. We then
evolved our servlet-based example to a three-tiered EJB architecture with the session
facade and EJB command patterns. Thanks to Hibernate’s detached object support,
we can avoid the DTO pattern and eliminate a great deal of tedious code.

Detached Hibernate objects are also useful when you’re implementing long-
running application transactions. We used a servlet filter as an interceptor to
implement application transactions with a long-running Hibernate Session.

In the second part of the chapter, we examined more exotic scenarios involving
legacy data schemas. You learned how to map (natural) composite keys and how to
handle them in application code. We also saw how to deal with triggers and use
Hibernate custom types when mapping legacy data.

Finally, we implemented audit logging for persistent entities with a Hibernate
Interceptor. Our custom interceptor uses a temporary Session trick to track mod-
ification events in an audit history table.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Using the toolset
This chapter covers

■ Hibernate application development processes
■ Automatic database schema generation
■ POJO code generation
■ Importing legacy schemas with Middlegen
■ Attribute-oriented programming with XDoclet
348

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Development processes 349

Good ORM software comes bundled with a set of tools, and so does Hibernate. In
this chapter, we’ll discuss the Hibernate toolset. These tools can automatically gen-
erate mapping metadata, SQL database schemas, and even Java POJO source code.
However, you have to use the right tool for your specific development process.

9.1 Development processes

In some projects, the development of a domain model is driven by developers ana-
lyzing the business domain in object-oriented terms. In others, it’s heavily influ-
enced by an existing relational data model: either a legacy database or a brand-new
schema designed by a professional data modeler.

Since different projects start from different points, we need to consider differ-
ent development scenarios and the different tools that may be used in each case.
An overview of the tools and the artifacts they use as source and output is shown in
figure 9.1. You may want to refer to this diagram while reading this chapter.

NOTE Note that AndroMDA, a tool that generates POJO source code from UML
diagram files, isn’t strictly considered part of the common Hibernate
toolset; hence we don’t discuss it in this chapter. See the community area
on the Hibernate website for more information about the Hibernate
modules in AndroMDA.

Before we begin looking closely at any of the particular tools you can use with
Hibernate, we’ll briefly survey the main scenarios and mention the tools that are
most appropriate to each.

Mapping
Metadata

Database

POJO
Java Source

SchemaExport
(hbm2ddl)

XDoclet

UML Model
XML/XMI

AndroMDA

CodeGenerator
(hbm2java)

Middlegen

Figure 9.1
Schema Input and output of the tools
used for Hibernate development

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

350 CHAPTER 9

Using the toolset

9.1.1 Top down

In top-down development, you start with an existing Java domain model (ideally imple-
mented with POJOs/JavaBeans) and complete freedom with respect to the data-
base schema. You must create a mapping document—either manually using a text
editor (recommended is an IDE with XML auto-completion) or automatically using
XDoclet—and then let Hibernate’s hbm2ddl tool generate the database schema. In
the absence of an existing data model, this is the most comfortable development
style for most Java developers. You can even use the Hibernate tools to automati-
cally refresh the database schema on every application restart in development.

9.1.2 Bottom up

Conversely, bottom-up development begins with an existing database schema and data
model. In this case, the easiest way to proceed is to use Middlegen to generate
Hibernate mapping documents and then run the hbm2java tool and generate skel-
etal POJO persistent classes. You’ll usually have to enhance and modify the gener-
ated Hibernate mapping by hand, because not all class association details and Java-
specific meta-information can be automatically generated from an SQL schema.

9.1.3 Middle out (metadata oriented)

Neither Java classes (without XDoclet annotations) nor DDL schemas contain
enough information to be able to completely deduce an ORM. Hence, if you wish
to generate the Hibernate mapping document instead of writing it by hand, you’ll
need extra input from the user. In the case of XDoclet, this information is provided
by XDoclet attributes embedded in the source code. In the case of Middlegen, it’s
provided via the Middlegen GUI.

On the other hand, the mapping document does provide sufficient information
to completely deduce the DDL schema and to generate working JavaBeans. Fur-
thermore, the mapping document isn’t too verbose. So, you may prefer middle-out
development, where you begin with a handwritten Hibernate mapping document
and generate the DDL using hbm2ddl and Java classes using hbm2java.

9.1.4 Meet in the middle

The most difficult scenario combines existing Java classes and an existing rela-
tional schema. In this case, there is little that the Hibernate toolset can do to help.
It isn’t possible to map arbitrary Java domain models to a given schema, so this sce-

nario usually requires at least some refactoring of the Java classes, database

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Automatic schema generation 351

schema, or both. The mapping document must almost certainly be written by hand
(although it might be possible to use XDoclet). This is an incredibly painful sce-
nario that is, fortunately, exceedingly rare.

9.1.5 Roundtripping

The notion of roundtripping is that any one of the three kinds of artifacts (Java
classes, mapping documents, database schema) should be sufficient to reproduce
the other two. Each tool should be completely reversible. You’ve already seen that
this isn’t the case. At the very least, you must add XDoclet annotations to the Java
classes. Worse, it’s never possible to fully reproduce the Java domain model or ORM
from only the database schema.

Nevertheless, the Hibernate team is attempting to achieve a slightly less ambi-
tious goal for the Hibernate toolset. Suppose you start with an existing database
schema. Then the following steps should reproduce this schema exactly, with min-
imal user intervention:

1 Use Middlegen to create a mapping document

2 Use hbm2java to generate annotated Java classes

3 Use XDoclet to regenerate the mapping document

4 Use hbm2ddl to generate the DDL

At the time of this writing, there is still work to be done before this approach works
perfectly, because it involves many different tools and metamodel conversions.

We’ll now look more closely at each of the tools we’ve mentioned, starting with
hbm2ddl. This tool is used to automatically generate SQL DDL from Hibernate map-
ping metadata. We assume that you’ve already created some POJO persistent classes
and the relevant Hibernate mappings and are now looking for a way to simplify the
creation of the schema in the database.

9.2 Automatic schema generation

Schemas for SQL-based database management systems are written in the SQL
DDL. This includes well-known statements such as CREATE and ALTER.

The tool used for the generation process is called hbm2ddl. Its class is
net.sf.hibernate.tool.hbm2ddl.SchemaExport; hence it’s also sometimes called
SchemaExport.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

352 CHAPTER 9

Using the toolset

NOTE The Hibernate extensions package—You may have noticed that hbm2ddl
resides inside the main Hibernate distribution and isn’t packaged with
the other tools in HibernateExtensions. The Hibernate team decided
that hbm2ddl is much closer to the core functionality of Hibernate than
any of the other tools and should be bundled with Hibernate itself. In
addition, you can run hbm2ddl from an application to automatically gen-
erate a database schema at runtime. This ability is especially useful if
you’d like to initialize the database every time the application in develop-
ment restarts.

In Hibernate, the prerequisite for automatically generating SQL DDL is always a
Hibernate mapping metadata definition in XML. We assume that you’ve designed
and implemented your POJO classes and written mapping metadata, but you prob-
ably haven’t paid much attention to database-specific details (like table and col-
umn names).

Some special elements and attributes can be used in the mapping files; most of
them are relevant only for a customized schema. Hibernate tries to use sensible
defaults if you don’t specify your own names and strategies; however, be warned
that a professional DBA might not accept this default schema without manual
changes. Nevertheless, the defaults may be satisfactory for a development or pro-
totype environment.

9.2.1 Preparing the mapping metadata

In this example, we’ve marked up the mapping for the Item class with hbm2ddl-spe-
cific attributes and elements. These optional definitions integrate seamlessly with
the other mapping elements, as you can see in listing 9.1.

<class name="Item" table="ITEM">

<id name="id" type="string">
 <column name="ITEM_ID" sql-type="char(32)"/>
 <generator class="uuid.hex"/>
</id>

<property name="name" type="string">
 <column name="NAME"
 not-null="true"
 length="255"
 index="IDX_ITEMNAME"/>
</property>

Listing 9.1 Additional elements in the Item mapping for SchemaExport

B

C

<property name="description"
 type="string"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Automatic schema generation 353

 column="DESCRIPTION"
 length="4000"/>

<property name="initialPrice"
 type="customtype.MonetaryAmount">
 <column name="INITIAL_PRICE" check="INITIAL_PRICE > 0"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>

<set name="categories" table="CATEGORY_ITEM" cascade="none">
 <key
 <column="ITEM_ID" sql-type="char(32)"/>
 </key>
 <many-to-many class="Category">
 <column="CATEGORY_ID" sql-type="char(32)/>
 </many-to-many>
</set>

...

</class>

hbm2ddl automatically generates a VARCHAR typed column if a property (even the
identifier property) is of mapping type string. We know the identifier generator
uuid.hex always generates strings that are 32 characters long; so, we use a CHAR
SQL type and also set its size fixed at 32 characters. The nested <column> element
is required for this declaration because there is no attribute to specify the SQL
datatype on the <id> element.

The column, not-null, and length attributes are also available on the <property>
element, but we want to create an additional index in the database, hence we
again use a nested <column> element. This index will speed our searches for items
by name. If we reuse the same index name on other property mappings, we can
create an index that includes multiple database columns. The value of this
attribute is also used to name the index in the database catalog.

For the description field, we chose the lazy approach, using the attributes on the
<property> element instead of a <column> element. The DESCRIPTION column will
be generated as VARCHAR(4000).

The custom user-defined type MonetaryAmount requires two database columns to
work with. We have to use the <column> element. The check attribute triggers the
creation of a check constraint; the value in that column must match the given arbi-
trary SQL expression. Note that there is also a check attribute for the <class> ele-

D

E

F

B

C

D

E

ment, which is useful for multicolumn check constraints.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

354 CHAPTER 9

Using the toolset

A <column> element can also be used to declare the foreign key fields in an associ-
ation mapping. Otherwise, the columns of our association table CATEGORY_ITEM
would be VARCHAR(32) instead of the more appropriate CHAR(32) type.

We’ve grouped all attributes relevant for schema generation in table 9.1; some of
them weren’t included in the previous Item mapping example.

Table 9.1 XML mapping attributes for hbm2ddl

Attribute Value Description

column string Usable in most mapping elements; declares the name of the SQL
column. hbm2ddl (and Hibernate’s core) defaults to the name of
the Java property) if the column attribute is omitted and no
nested <column> element is present. This behavior may be
changed by implementing a custom NamingStrategy; see the
section “Naming conventions” in chapter 3.

not-null true/false Forces the generation of a NOT NULL column constraint. Available
as an attribute on most mapping elements and also on the dedi-
cated <column> element.

unique true/false Forces the generation of a single-column UNIQUE constraint.
Available for various mapping elements.

length integer Can be used to define a "length" of a datatype. For example,
length="4000" for a string mapped property generates a
VARCHAR(4000) column. This attribute is also used to define
the precision of decimal types.

index string Defines the name of a database index that can be shared by mul-
tiple elements. An index on a single column is also possible. Only
available with the <column> element.

unique-key string Enables unique constraints involving multiple database columns.
All elements using this attribute must share the same constraint
name to be part of a single constraint definition. This is a <col-
umn> element-only attribute.

sql-type string Overrides hbm2ddl’s automatic detection of the SQL datatype;
useful for database specific data types. Be aware that this effec-
tively prevents database independence: hbm2ddl will automati-
cally generate a VARCHAR or VARCHAR2 (for Oracle), but it will
always use a declared SQL-type instead, if present. This attribute
can only be used with the dedicated <column> element.

foreign-key string Names a foreign-key constraint, available for <many-to-one>,
<one-to-one>, <key>, and <many-to-many> mapping ele-
ments. Note that inverse="true" sides of an association map-
ping won’t be considered for foreign key naming, only the non-
inverse side. If no names are provided, Hibernate generates

F

unique random names.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Automatic schema generation 355

After you’ve reviewed (probably together with a DBA) your mapping files and
added schema-related attributes, you can create the schema.

9.2.2 Creating the schema

The hbm2ddl tool can be called from the command line:

java -cp classpath net.sf.hibernate.tool.hbm2ddl.SchemaExport
 options mapping_files

You have to make sure that Hibernate and its third-party libraries are in the class-
path, along with your compiled persistent classes.

Table 9.2 shows the options for hbm2ddl.

As you can see from these options, the DDL can be directly executed. Doing so
requires database connection settings in a properties file (or XML-based config-
uration). The DDL generated by hbm2ddl will always drop all tables and regener-
ate them; this is especially useful in development. Remember that a Hibernate
database dialect is required in the configuration, because SQL DDL is highly
vendor-specific.

One of the reasons hbm2ddl is distributed with the core Hibernate package is its
ability to be started from inside an application, as shown here:

Configuration cfg = new Configuration();
SchemaExport schemaExport = new SchemaExport(cfg);

Table 9.2 Command-line hbm2ddl configuration options

Option Description

--quiet Don’t output the script to stdout.

--drop Only drop the tables and clean the database.

--text Don’t export the DDL directly to the database, but only to stdout.

--output=filename Output the DDL script to the given file.

--config=filename Read the database configuration from a Hibernate XML configuration file.

--properties=filename Read database properties from a Hibernate properties file.

--format Format the generated SQL nicely in the script instead of using one row for
each statement.

--delimiter=x; Set an end-of-line delimiter for the script (usually a semicolon). The default
is to not output an end-of-line delimiter. This delimiter is used only in tex-
tual output; it isn’t relevant if the DDL is executed immediately.
schemaExport.create(false, true);

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

356 CHAPTER 9

Using the toolset

A new SchemaExport object is created from a Configuration. If you use a hiber-
nate.cfg.xml, the database connection settings and the dialect will be available in
the Configuration and passed to the SchemaExport constructor. The cre-

ate(false, true) call triggers the DDL creation process without any SQL printed
to stdout (false) but with DDL immediately executed in the database (true). See the
SchemaExport API for more information; all command-line options are also avail-
able directly in Java and can be set on the SchemaExport object.

The hbm2ddl tool can also be globally controlled by Hibernate configuration
properties—for example, in the hibernate.properties:

hibernate.hbm2ddl.auto create-drop

Setting hibernate.hbm2ddl.auto to create-drop enforces a drop and a create of
the database schema if buildSessionFactory() is called (usually, when a Hibernate
application starts). Once you close() the SessionFactory, the schema is dropped
again. Setting this parameter to create only drops and creates the schema when
the SessionFactory is created. There is also an update setting for automatic
updates of schema for schema evolution. The SchemaUpdate tool is used for that
purpose, as discussed in the next section.

You may not be satisfied with these three options. Running hbm2ddl from the
command line feels awkward, and using it inside your application isn’t helpful in
all development scenarios. If you, like most Java developers, use Ant to built
projects, you can use an Ant task for automatic schema generation:

<target name="schemaexport">
 <taskdef name="schemaexport"
 classname="net.sf.hibernate.tool.hbm2ddl.SchemaExportTask"
 classpathref="class.path"/>

 <schemaexport
 config="${basedir}/etc/hibernate_export.cfg.xml"
 quiet="no"
 text="no" drop="no"
 delimiter=";"
 output="schema-export.sql">
 <fileset dir="src">
 <include name="**/*.hbm.xml"/>
 </fileset>
 </schemaexport>
</target>

This example uses an Ant task definition, and the task may be called with different
options. In this case, the DDL is exported to a file (schema-export.sql) with a semi-

colon as a line delimiter. We also enable the DDL generation for all mapping files

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Automatic schema generation 357

found in the src directory and export it directly to the database (text="no"). The
database connection settings (and the dialect) are read from the hibernate_
export.cfg.xml found in the etc/ subdirectory.

9.2.3 Updating the schema

Once you’ve deployed an application, it becomes difficult to alter the database
schema. This can even be the case in development, if your scenario requires test
data that has to be redeployed after every schema change. With hbm2ddl, your only
choice is to drop the existing structure and create it again, possibly followed by a
time-consuming test data import.

Hibernate comes bundled with a tool for schema evolution, SchemaUpdate, which
is used to update an existing SQL database schema; it drops obsolete tables, col-
umns, and constraints. It uses the JDBC metadata and creates new tables and con-
straints by comparing the old schema with the updated mapping information. Note
that SchemaUpdate depends on the quality of the metadata provided by the JDBC
drivers, so it may not work as expected with some databases and drivers. (We actu-
ally think that SchemaUpdate is not very usable in practice at the time of writing.)

You can run SchemaUpdate from inside an application, as shown here:

Configuration cfg = new Configuration();
SchemaUpdate schemaUpdate = new SchemaUpdate(cfg);
schemaUpdate.execute(false, true);

A SchemaUpdate object is created from an existing Configuration. It requires the
same settings (database connection and dialect) as hbm2ddl. This example only
updates the database, without any DDL statements printed to stdout (as specified
by false).

Of course, you can also use SchemaUpdate in an Ant build script:

<target name="schemaupdate">
 <taskdef name="schemaupdate"
 classname="net.sf.hibernate.tool.hbm2ddl.SchemaUpdateTask"
 classpathref="class.path"/>

 <schemaupdate
 properties="hibernate.properties"
 quiet="no">
 <fileset dir="src">
 <include name="**/*.hbm.xml"/>
 </fileset>
 </schemaupdate>
</target>
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

358 CHAPTER 9

Using the toolset

This task updates the database schema for all mapping files found in the src direc-
tory and also prints the DDL to stdout. Database connection settings are read from
the hibernate.properties file found in the classpath.

The hbm2ddl tool is popular; most Hibernate projects use it in a top-down devel-
opment process. It uses the Hibernate mapping metadata to generate a database
schema that should conform with the expectations of any DBA. However, it isn’t the
only Hibernate tool that utilizes mapping metadata. In a bottom-up or middle-out
development process, you can also generate Java source for persistent classes.

9.3 Generating POJO code

Hibernate’s tool for automatic generation of persistent classes is called
hbm2java; its main class is net.sf.hibernate.tool.hbm2java.CodeGenerator. This
tool is also known as CodeGenerator, and it’s available in the optional Hiberna-
teExtensions distribution.

You should use hbm2java for

■ POJO source generation from Hibernate mapping files, using a middle-out
development approach

■ POJO source generation from mapping files that have also been automati-
cally generated by Middlegen from an existing (legacy) database schema

hbm2java is highly customizable; you use extra metadata in the mapping files as
with hbm2ddl. The Hibernate toolset documentation explains the basic usage of the
tool and includes an overview of all possible configuration parameters. Instead of
repeating them here, we’ll discuss a practical example.

9.3.1 Adding meta-attributes

Let’s assume that we have an existing Hibernate mapping file for the User class, and
we’d like to generate the source for the class using the POJO conventions. As dis-
cussed in chapter 3, a POJO implements Serializable and has a no-arguments con-
structor, getters and setters for all properties, and an encapsulated implementation.

We generally use Hibernate’s defaults in the mapping metadata and try to write
as little metadata as possible. Some of the Hibernate defaults are generated using
reflection on existing persistent classes. Of course, you can’t rely on this auto-detec-
tion mechanism when you’re using hbm2java, because there are no classes to
reflect on.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Generating POJO code 359

Therefore, our first step is to improve the mapping metadata, so hbm2java
will be able to run without errors. For example, if we’ve mapped the username
of the User as

<property name="username"/>

we now explicitly include the type of the property, using either Hibernate mapping
types or Java class names:

<property name="username" type="string"/>

After completing our mapping with type information, we continue with settings for
the code-generation process.

By default, hbm2java produces a simple POJO persistent class. The class imple-
ments the Serializable marker interface, it has the required constructor and
accessor methods, and it implements the recommended toString() and
equals()/hashCode() methods with default semantics. All attributes of the class
have private visibility, as expected. We can change that behavior with the <meta>
element and attributes in our mapping files.

One of the first improvements we make is a more restrictive visibility scope for
the User’s properties. By default, all accessor methods are generated with public
visibility. If our User objects were immutable, we wouldn’t expose the setter meth-
ods on the public interface—only the getter methods. Instead of enhancing the
mapping of each property with a <meta> element, we can declare a meta-attribute
at the class level, thus applying the setting to all properties in that class:

<class name="User"
 table="USER">

 <meta attribute="scope-set">private</meta>

 ...

</class>

The scope-set attribute defines the visibility of property setter methods. hbm2java
also accepts meta-attributes on the next higher level, in the hbm2java configuration
file discussed later in this section. This global meta-attribute affects source genera-
tion for all classes. We can also add fine-grained meta-attributes to single property,
collection, or component mappings, as you’ll see next.

One (albeit small) improvement is the inclusion of the User’s username in the
output of the generated toString() method. By default, toString() only shows the
identifier value of an object. The username will be a good visual control element
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

360 CHAPTER 9

Using the toolset

in our application’s log output. So, we change the mapping of User to include it in
the generated code:

<property name="username"
 type="string">
 <meta attribute="use-in-tostring">true</meta>
</property>

The generated code of the toString() method in User.java looks like this:

public String toString() {
 return new ToStringBuilder(this)
 .append("id", getId())
 .append("username", getUsername())
 .toString();
}

Note that hbm2java uses utility classes, in this case the ToStringBuilder of the com-
mons-lang open source project. You have to include these utility libraries in your
project if you want to compile the generated code without manual modification.

As we mentioned earlier, meta-attributes can be inherited—that is, if we declare
a use-in-tostring at the level of a <class> element, all properties of that class are
included in the toString() method. This inheritance mechanism works for all
hbm2java meta-attributes, but we can turn it off selectively:

<meta attribute="scope-class" inherit="false">public abstract</meta>

Setting inherit to false in the scope-class meta-attribute creates the current
class as public abstract, but not its subclasses.

At the time of this writing, hbm2java supports 21 meta-attributes for fine-tuning
code generation. Most are related to visibility, interface implementation, class
extension, and predefined Javadoc comments. Two of the meta-attributes are more
interesting, because they control the automatic generation of finder methods.

9.3.2 Generating finders

A finder is a static method that may be called by application code to retrieve objects
from the database. It’s part of a finder class; the interface of that class can be
regarded as a part of the public visible API of the persistence layer.

A full persistence layer would require all kinds of interfaces to manage objects:
for example, a full DAO API, as described in chapter 8. You can use the automati-
cally generated finders as the skeleton for that implementation.

hbm2java generates finder methods for single properties. We add a finder meta-

attribute to our mapping declaration:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Generating POJO code 361

<property name="username"
 type="string">
 <meta attribute="use-in-tostring">true</meta>
 <meta attribute="finder">findByUsername</meta>
</property>

The finder attribute declares the name for the finder method, findByUsername in
this case. The generated static method therefore is

public static List findByUsername(Session session, String username)
 throws SQLException, HibernateException {

 List finds = session.find("from User as user where user.username=?",
 username, Hibernate.STRING);
 return finds;
}

This method accepts a username as an argument and returns a List of all Users with
that name. The class of this method is called UserFinder:

public class UserFinder implements Serializable {

 public static List findAll(Session session)
 throws SQLException, HibernateException {

 List finds = session.find("from User ");
 return finds;
 }

}

Note that a generated finder class has at least one method, findAll(), which
returns all objects of that class.

Also note how the finder methods use the Hibernate Session: It must be
passed as an argument to each method call. This can be inconvenient, especially
if an application uses a ThreadLocal mechanism for Session handling, as dis-
cussed in chapter 8.

We can set a static helper method that we’d like to use instead of the Session
argument by adding the session-method meta-attribute to the class mapping:

<class name="User"
 table="USER">

 <meta attribute="session-method">
 HibernateUtil.getSession();
 </meta>
 ...

</class>
The generated finder method then uses a call to this helper method to obtain
a Session:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

362 CHAPTER 9

Using the toolset

public static List findAll()
 throws SQLException, HibernateException {

 Session session = HibernateUtil.getSession();
 List finds = session.find("from User");
 return finds;
}

We recommend this approach instead of the clumsy additional parameter for each
finder method. See chapter 8 for more information on the thread-local session and
the HibernateUtil class.

Finally, you can control the generation of basic POJO persistent classes and
finder classes with the hbm2java configuration file.

9.3.3 Configuring hbm2java

Without a configuration file, hbm2java uses only the meta-attributes in the map-
ping metadata and its BasicRenderer for source generation. This renderer pro-
duces POJO persistent classes but not finder classes. We have to add the
FinderRenderer to the configuration:

<codegen>

 <meta attribute="implements">
 org.hibernate.auction.model.Auditable
 </meta>

 <generate
 renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>

 <generate
 renderer="net.sf.hibernate.tool.hbm2java.FinderRenderer"
 package="org.hibernate.auction.finder"
 suffix="Finder"/>

</codegen>

We also added a global meta-attribute to this configuration; it’s effective for all
classes in all mapping declarations. We set the BasicRenderer for POJO persistent
classes. The FinderRenderer can be customized with two settings: the package and
the suffix for the generated classes. The full name of the finder class for User
therefore is org.hibernate.auction.finder.UserFinder.java.

One of the newer features of hbm2java is a renderer that uses the Velocity
template engine. BasicRenderer and FinderRenderer use hard-coded templates
for the code generation, whereas VelocityRenderer can be fully customized with
user-defined templates. It replaces the other two renderers in the hbm2java con-

figuration file:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Generating POJO code 363

<codegen>
 <generate
 renderer="net.sf.hibernate.tool.hbm2java.VelocityRenderer">
 <param name="template">pojo.vm</param>
 </generate>
</codegen>

This renderer uses the template parameter as the name of the template used for
code generation. This template is written in Velocity’s language and must be avail-
able on the classpath on execution. hbm2java comes bundled with a default
pojo.vm template file, which you might use as a skeleton for your own application-
specific templates. Note that Velocity-based code generation is still in its early
stages, and the default template isn’t as sophisticated as the BasicRenderer. We also
consider implementing your own render class as a more powerful approach,
because Velocity unfortunately isn’t very flexible for code generation. So, if you
don’t have time to learn Velocity, you should be able to produce a custom method
quickly by using the BasicRenderer and FinderRenderer source code as a template.

You can start hbm2java either on the command line or with the hbm2java Ant task
in the regular build process.

9.3.4 Running hbm2java

You can easily start hbm2java from the command line:

java -cp classpath net.sf.hibernate.tool.hbm2java.CodeGenerator
 options mapping_files

hbm2java supports two options: output sets the directory for generated code, and
config can be used to set a configuration file. Each mapping file that should be
included in the source generation process must be named explicitly.

An Ant task might be more appropriate in most projects. Here’s an example:

<target name="codegen">

 <taskdef name="hbm2java"
 classname="net.sf.hibernate.tool.hbm2java.Hbm2JavaTask"
 classpathref="class.path"/>

 <hbm2java config="codegen.cfg.xml"
 output="generated/src/">

 <fileset dir="mappings/">
 <include name="**/*.hbm.xml"/>
 </fileset>

 </hbm2java>
</target>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

364 CHAPTER 9

Using the toolset

This target produces Java source files in the generated_src directory. hbm2java uses
the codegen.cfg.xml file from the current directory as its configuration and reads
all Hibernate mapping files from the mappings directory (and its subdirectories).

Remember to provide a classpath reference to this task that includes not only
the hibernate-tools.jar of the HibernateExtensions distribution but also the
Hibernate core JAR and all required third-party libraries for Hibernate (and Veloc-
ity, if required).

The hbm2java tool can significantly improve your application development pro-
cess, especially if you have a large number of existing database tables and also auto-
matically generate Hibernate mapping metadata from that schema. Generating
the mapping metadata from a schema is the job of Middlegen.

9.4 Existing schemas and Middlegen

Many developers use Hibernate in projects with legacy databases and existing sche-
mas. In those cases, you usually can’t modify the schema for easier integration with
Hibernate. SQL databases traditionally have problems with schema evolution;
some products even have problems renaming a table column.

If your only choice is to work with an existing schema, you may as well try to auto-
matically generate Hibernate mapping metadata from that schema. Doing so is
especially useful if the schema contains many tables (say, more than 50) and the
application working with that data has to be up and running as early as possible
(which is also usually the case). You can use Middlegen to generate a mapping skel-
eton from database metadata and then refine the mappings by hand.

Middlegen isn’t limited to Hibernate metadata; it can also generate EJB entity
bean code or Struts actions and JSP code through its plugins architecture. How-
ever, we’ll focus on the Hibernate plugin in this section. Middlegen also offers a
nice GUI, so you can rearrange the tables and customize the metadata generation
process graphically.

9.4.1 Starting Middlegen

The preferred way to start Middlegen is with Ant, using the bundled middle-
gen.MiddlegenTask. As always, you declare it in the build.xml after you copy the
Middlegen core and Hibernate plugin JAR libraries to the classpath (Don’t forget
your JDBC driver!):

<taskdef name="middlegen"
 classname="middlegen.MiddlegenTask"

 classpathref="class.path"/>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Existing schemas and Middlegen 365

You can now use this middlegen task in whatever target you like and start the Mid-
dlegen GUI:

<middlegen appname="CaveatEmptor"
 prefsdir="${basedir}" gui="true"
 databaseurl="jdbc:oracle:thin:@localhost:1521:orac"
 driver="oracle.jdbc.driver.OracleDriver"
 username="test"
 password="test"
 schema="auction">
 <hibernate destination="generated/src"
 package="org.hibernate.auction.model"/>
</middlegen>

The previous example shows the minimum configuration options for Middlegen
with the Hibernate plugin. You have to specify the database connection settings,
such as JDBC driver, database URL, and login. The schema name is also important;
otherwise, Middlegen will use all tables the user has access to, not only the tables
owned by the user/schema.

Middlegen saves the user’s preferences (settings such as the position of the
tables in the graphical interface and customization options); it uses the base direc-
tory of your project as the save path. The name of the preferences file is the same
as the application name: in this case, CaveatEmptor-prefs.properties.

Finally, you configure the Hibernate plugin. You have to set the target directory
for the generated mapping files. In this example, we use the same directory that
we might later use for the generated POJO source files (with hbm2java), so XML
mapping files and persistent classes are in the same path. The package setting is
used for all classes in the mapping metadata.

Executing this target with Ant starts Middlegen. After automatically connecting
to the local Oracle database, Middlegen reads the schema metadata and shows a
graphical interface. This interface has a view of the database tables in the top half
and a dialog with various options at the bottom. Figure 9.2 shows the table view.

If you start Middlegen for the first time (without an existing configuration),
the tables and relationships in the overview may look chaotic. Some manual work
is required to get a good overview; luckily this must be done only once, because
Middlegen saves the layout in the preferences. You can click and drag tables in
the view and also select relationships for further customization (see the high-
lighted relationship between CATEGORY and CATEGORY_ITEM). After some work, we
get a view of the CaveatEmptor database as shown in the figure; notice that the
canvas extends to the right side with all other tables and relationships that have

been found in our schema.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

366 CHAPTER 9

Using the toolset

The first thing we want to customize is the association table between the CATEGORY
and ITEM tables. In our application, the CATEGORY_ITEM table should be used to
implement the many-to-many association between the Category and Item classes.
However, it will be generated as a separate entity (a CategoryItem persistent class)
if we don’t change the Middlegen defaults.

Most Middlegen options can be modified graphically; but this change must be
made before startup, in Middlegen’s Ant configuration.

9.4.2 Restricting tables and relationships

Association tables that are part of a many-to-many relationship must be declared in
the Middlegen Ant task as a jointable:

<hibernate destination="generated/src/"
 package="org.hibernate.auction.model"/>

<many2many>
 <tablea name="CATEGORY"/>
 <jointable name="CATEGORY_ITEM" generate="false"/>
 <tableb name="ITEM"/>
</many2many>

The <many2many> element indicates a many-to-many association. Middlegen now
generates only a single association in the mapping files instead of an additional
entity and two one-to-many associations. By declaring generate="false" for the

Figure 9.2 Middlegen showing the tables of the CaveatEmptor database
association table, we tell Middlegen to analyze the table (for association genera-
tion) but not generate any dedicated class for it.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Existing schemas and Middlegen 367

We now get a different graphical view of the tables; see figure 9.3.
The relationship between CATEGORY and ITEM is now correct, and the lines and

arrows (and all other tables) on the right side of our canvas are gone (which you
might not have expected).

With the new many2many option set in the Ant task, Middlegen now only consid-
ers the named tables, not all tables. Because we only named the two tables (and the
association table), Middlegen ignores all others. We can use the <table> element
in the Ant task to declare additional tables manually:

<hibernate>
 ...
 <many2many>
 ...

 <table name="BID"/>

Middlegen now also reads (and generates code for) the BID table (and the relation-
ships between ITEM and BID). The table element is independent of the many2many;
you can use it alone to specify the subset of tables in a schema for which mapping
metadata should be generated.

The table element has attributes for further customization, such as a setting for
singular and plural names (useful for automatic property naming in associations—
for example, Item.getCategorys() versus Item.getCategories()). The few other
options are rarely used; you can find a description in the Middlegen documentation.

Figure 9.3 A many-to-many relationship between CATEGORY and ITEM
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

368 CHAPTER 9

Using the toolset

Some other interesting (Hibernate-specific) Ant task options exist, but first we’ll
discuss the graphical customization with the Middlegen GUI. After all, we now have
all our tables and relationships loaded by Middlegen.

9.4.3 Customizing the metadata generation

In the table overview, you can select tables, association lines, and individual col-
umns by clicking on them. You can change the multiplicity and the navigation
option of a relationship by clicking on the ends of the associations (on the
arrows) while holding down the Ctrl or Shift key. The multiplicity controls the
generation of a collection-valued or single-entity-valued property for this associa-
tion; it switches between one-to-one and one-to-many (and many-to-one) associa-
tion generation.

Furthermore, you can select tables, single fields, or all fields of a table, and
then modify the Hibernate mapping generation with the Middlegen controls. In
figure 9.4, we’ve selected the ITEM table.

Middlegen has some defaults, such as the name (Item) for the generated class
mapping. The other options reflect the Hibernate mapping elements and
attributes; you can change the key assignment strategy, visibility, and interfaces of

Figure 9.4 Mapping generation options in Middlegen for the ITEM table
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Existing schemas and Middlegen 369

the persistent class. All options for a single table are related to the <class> Hiber-
nate mapping element.

You can customize a single property by selecting a column in the overview (see
figure 9.5).

In this example, the INITIAL_PRICE column of the ITEM table is selected, its
default Java type is shown as BigDecimal. Middlegen automatically suggests this
type by reading the (possibly vendor-specific) SQL type in the schema metadata
(such as NUMBER(10,2) in Oracle).

The default mechanism used for type detection isn’t perfect, however. Consider
the RANKING column in the USER table. The SQL data type in Oracle for this column
is NUMBER(10,0). Middlegen will by default generate the following Hibernate map-
ping XML:

<property
 name="ranking"
 type="long"
 column="RANKING"
 not-null="false"
 length="10"/>

Figure 9.5 Mapping generation options for the INITIAL_PRICE column
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

370 CHAPTER 9

Using the toolset

This looks fine, but what if our Java class shouldn’t have a primitive, but rather a
java.lang.Long as the property type? If you look at the RANKING column again, you
can see that we have to change the type to java.lang.Long: the primitive long can’t
be null, but the field in the database can be.

Selecting each column in the table overview and changing its property type
manually isn’t the best way to solve this problem. Hibernate’s plugin for Middlegen
comes bundled with a custom type-mapper that helps; it has to be turned on in the
Middlegen Ant task:

<hibernate destination="${gensrc.home}"
 package="org.hibernate.auction.model"
 javaTypeMapper=

➾"middlegen.plugins.hibernate.HibernateJavaTypeMapper"/>

This mapper automatically detects nullable columns and changes the default map-
ping (or Java) type to a nonprimitive type. You can also supply your own type map-
ping strategy and use the HibernateJavaTypeMapper as a starting point. The source
code is, as always, freely available.

Let’s go back to the customization dialog in Middlegen. The Domain Property
Meta Attributes dialog isn’t directly relevant for the Hibernate mapping XML—
that is, they don’t control the generation of a POJO mapping element. As the name
implies, you use these controls to customize the additional meta-attributes for
hbm2java. This is especially useful for roundtrip development if you want to gener-
ate not only the mapping metadata but also Java POJO code using that metadata.

9.4.4 Generating hbm2java and XDoclet metadata

Middlegen can generate hbm2java-specific meta-attributes. For example, if we set
the scope of the property for the NAME column in the CATEGORY table to private, Mid-
dlegen generates this XML for the name property and the Category class:

<property
 name="name"
 type="java.lang.String"
 column="NAME"
 not-null="true"
 length="255">
 <meta attribute="scope-get">private</meta>
 <meta attribute="scope-set">private</meta>
</property>

The <meta>-element is used by the POJO hbm2java as discussed earlier in this chap-
ter. The generated POJO class Category will have private accessor methods for the

name property.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Existing schemas and Middlegen 371

This isn’t the last stage; you can go one step further and include XDoclet tags in
the generate POJO source. That means you can generate Hibernate mapping meta-
data from a database schema, generate POJO source from the metadata, and then
run XDoclet on that source to generate mapping metadata again. This is especially
useful if Middlegen is only used for an initial import of the schema and you’d like
to continue from that with customization of POJO source and/or metadata only.
The trick is again the meta-attribute for hbm2java; you can use the description meta-
attributes to place XDoclet tags in the generated Javadoc of your source files.

First, we have to turn on the XDoclet option in Middlegen’s Ant target:

<hibernate destination="generated_src/"
 package="org.hibernate.auction.model"
 genXDocletTags="true"/>

Consider the NAME column of CATEGORY again. Middlegen now generates the follow-
ing Hibernate mapping XML:

<property
 name="name"
 ...

>

 <meta attribute="field-description">
 @hibernate.property
 column="NAME"
 length="255"
 not-null="true"
 </meta>
</property>

Running hbm2java with this XML generates POJO Java source with XDoclet tags in
comments:

/**
 * @hibernate.property
 * column="NAME"
 * length="255"
 * not-null="true"
 */
public String getName() { return name; }

After generating the Hibernate mapping metadata skeleton with Middlegen and
POJO source code with hbm2java, you can switch to top-down development to fur-
ther customize your persistent classes and mappings.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

372 CHAPTER 9

Using the toolset

9.5 XDoclet

With a top-down development process, you start your implementation by writing
persistent Java classes (or generating them automatically with AndroMDA or
hbm2java). In this scenario, attribute-oriented programming for automatic metadata
generation is the preferred approach. As we discussed in chapter 3, Java has no lan-
guage constructs for metadata (JSR-175 and JDK 1.5 will solve that, however). You
use Javadoc tags (such as @attribute) to specify class-, field-, or method-level meta-
data attributes in your source code.

XDoclet is the tool that reads these meta-attributes and generates Hibernate map-
ping files. XDoclet isn’t limited to Hibernate; it can generate all kinds of XML-
based descriptor files, such as EJB or web service deployment descriptors. In this
section, we use XDoclet version 1.2; it can generate either the old Hibernate 1.x
mapping files or metadata for Hibernate 2.x.

We already discussed the advantages and disadvantages of XDoclet (and the
future of attribute-oriented programming) in chapter 3, section 3.3.3, “Attribute-
oriented programming.” In this section, we’ll look more closely at XDoclet and use
it to generate the mapping metadata for several CaveatEmptor persistent classes.
The first class is the User.

9.5.1 Setting value type attributes

The User class is an entity with an identifier property, various other value-typed
properties (and a component, Address), and associations to other entities. First, we
declare the mapping for the User:

/**
 * @hibernate.class
 * table="USERS"
 */
public class User implements Serializable {
...

The XDoclet tags for Hibernate always have the syntax @hibernate.tagname
(optional) attributes. The tagname is related to the element in XML mapping
declarations; in the previous example, a hibernate.class tag refers to a <class>
mapping element. The attribute table is set to USERS.

An excerpt of the generated mapping file from this tag looks like this:

<hibernate-mapping>
 <class
 name="User"

 table="USERS">
...

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

XDoclet 373

Note that we’ve reformatted all generated example mappings in this section for
better readability; we’ve also removed attributes if they’ve been set to default values
by XDoclet. Your result might look different, but it has the same semantics.

Users are entities, so we need an identifier property. In the persistent class
source, all properties (value typed or entity association attributes) are marked
with XDoclet tags on the getter method. For the id property, we add a Javadoc
comment to getId():

/**
 * @hibernate.id
 * column="USER_ID"
 * unsaved-value="null"
 * generator-class="native"
 */
public Long getId() {
 return id;
}

The attributes of the hibernate.id tag are the same as the attributes for the <id>
element. We continue with a simple property, the username:

/**
 * @hibernate.property
 * column="USERNAME"
 * length="16"
 * not-null="true"
 * unique="true"
 * update="false"
 */
public String getUsername() {
 return username;
}

A hibernate.property tag has all the attributes of a <property> element. You may
have noticed the pattern by now. Also remember that you can rely on the Hiber-
nate defaults: If you added the @hibernate.property tag to the getter without any
attributes, your mapping would be <property name="username"/>; you’d then use
default values for all other possible attributes. This technique allows rapid proto-
typing of your domain model with XDoclet.

We have one more value-typed property in User, the Address component:

/**
 * @hibernate.component
 */
public Address getAddress() {
 return address;

}

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

374 CHAPTER 9

Using the toolset

This time, the Hibernate defaults are used for the hibernate.component declara-
tion. In addition to this declaration of a component mapping, the individual prop-
erties of Address must also be mapped: In the Address source code, we add
hibernate.property tags to the getStreet(), getZipcode, and getCity() getter
methods. We don’t mark up the Address class itself—it isn’t an entity (only a com-
ponent of User and possibly others), and it doesn’t even have an identifier prop-
erty. Only the getter methods of the component properties have to be tagged.

Let’s complete the mapping declaration for User with tags for entity associa-
tion mapping.

9.5.2 Mapping entity associations

Mapping entity associations with XDoclet is basically the same as for value-typed
properties; XDoclet tags are added to the getter methods for all association related
properties. For example, the association from User to Item looks like this:

/**
 * @hibernate.set
 * inverse="true"
 * lazy="true"
 * cascade="save-update"
 * @hibernate.collection-key
 * column="SELLER_ID"
 * @hibernate.collection-one-to-many
 * class="Item"
 */
public Set getItems() {
 return items;
}

The first thing that’s different from a simple value-typed property is the number of
tags we need for the mapping. We’re mapping the “many” end of a bidirectional
one-to-many association; hence the use of a collection type. The attributes for the
hibernate.set are the same as always: inverse for the bidirectional aspect and, of
course, lazy loading. The other two tags are also related to well-known Hibernate
XML elements, <key> and <one-to-many>. Notice that we name the foreign key col-
umn in the Item’s table SELLER_ID (USER_ID would be more obvious, but less
expressive) and that we have to explicitly name the class of entities referenced by
the Set.

We also have to map the other end of this association. In the Item class, we map
the seller:

/**

 * @hibernate.many-to-one
 * column="SELLER_ID"

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

XDoclet 375

 * cascade="none"
 * not-null="true"
 */
public User getSeller() {
 return seller;
}

For the “one” side of the association, we may omit the class of the referenced entity;
it’s implicit from the property’s type. We now have both ends of the association
mapped and can continue generating the XML files—that is, run XDoclet.

9.5.3 Running XDoclet

Generating mapping files with XDoclet is easy, because it’s available as an Ant task.
As always, we first have to declare the new task in the Ant build.xml:

<taskdef name="hibernatedoclet"
 classname="xdoclet.modules.hibernate.HibernateDocletTask"
 classpathref="class.path"/>

The classpath for this task should include xdoclet-X.X.X.jar, xdoclet-hibernate-
module-X.X.X.jar, xdoclet-xdoclet-module-X.X.X.jar, and xjavadoc-X.X.X.jar.
These libraries are all in the XDoclet main distribution, as are several required
third-party libraries, such as commons-lang.jar, commons-collections.jar, and
commons-logging.jar. The Hibernate library (and its third-party libraries) aren’t
required by the XDoclet process.

The next step is to include the task we defined in the target we’ll call. We use a
new target called xdoclet, as shown here:

<target name="xdoclet">
 <hibernatedoclet
 destdir="mappings/"
 excludedtags="@version,@author,@todo"
 force="true"
 mergedir="merge/">

 <fileset dir="src">
 <include name="**/org/hibernate/auction/*.java"/>
 </fileset>

 <hibernate version="2.0"/>

 </hibernatedoclet>
</target>

First, the destdir attribute defines the target directory for the generated mapping
files. We exclude the standard Javadoc tags from the generation process, and force

a processing of Java source files each time XDoclet runs (otherwise, only mappings

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

376 CHAPTER 9

Using the toolset

for updated source files would be generated). The mergedir can be used to auto-
matically include user-defined mappings in the generated files.

Next, all Java source files in the directory src and subdirectory (package)
org.hibernate.auction are checked for XDoclet tags. Finally, we switch the
XDoclet Hibernate module to Hibernate2, otherwise XDoclet generates Hiber-
nate 1.x mapping descriptors.

XDoclet for Hibernate metadata generation has an impact on the development
environment and how a team of developers works together. You should be aware
of the consequences.

The mergedir setting of the Ant task helps if you have to implement exceptional
cases specific to your development environment and process. If you place a file
named hibernate-properties-class.xml in the mergedir, its contents will be
added to the mapping file of the class. This allows you to use additional mappings,
separated from the XDoclet-tagged Java source.

One final word about XDoclet: You may be tempted to use it in all situations,
even if it isn’t appropriate. XDoclet with Hibernate is best suited for clean-room
top-down development, but it may not be the best tool if you have to work with an
existing database schema. It’s especially difficult—and even impossible in some
cases—to map composite key structures and certain ternary associations with
XDoclet tags. However, most class, property, and association mappings can be
declared easily.

9.6 Summary

Sometimes the development process is fixed: With legacy databases, you can only
start from an existing schema, and you’ll usually want to automatically generate
POJO classes that represent your data model. You use hbm2java to generate Java
source code from Hibernate mapping metadata. This metadata can also be auto-
matically generated from an existing database schema with Middlegen, thus com-
pleting the bottom-up development process.

If you’re working from the top down, you start with POJO persistent classes.
Instead of manually creating the mapping metadata and the database schema for
these classes, you mark up your source with custom Javadoc tags and generate
Hibernate mapping files with XDoclet. The Hibernate tool hbm2ddl creates SQL
files with DDL from Hibernate mapping metadata, completing the top-down devel-
opment process.

If you use the Hibernate toolset (and open source projects such as AndroMDA,

Middlegen, and XDoclet), you always have to be aware of conceptual limitations:

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Summary 377

A fully automated, perfect generation of either POJO classes or mapping metadata,
no matter from what source, isn’t possible. You always have to customize the gen-
eration process or modify the end result manually.

This isn’t a limitation of the tools, which we consider quite capable, but a restric-
tion that stems from the fact that not every detail can be extracted from each
source. One exception is the top-down approach (hence its popularity): With
POJO classes and mapping metadata in place, you can generate an SQL DDL script
with hbm2ddl. In our experience, this script is (almost) as good as any hand-coded
schema declaration.

It’s a good idea to start learning Hibernate without any of the tools. The goal of
the tools is to relieve you from having to perform the repetitive tasks that will occur
when you work with Hibernate in a project. This is different from a graphical map-
ping workbench or other such gimmick, which may help at first but slow you down
later. Take the time to learn the basics, and then double your speed with the tools.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

SQL fundamentals
378

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX A 379
SQL fundamentals

A table, with its rows and columns, is a familiar sight to anyone who has worked
with an SQL database. Sometimes you’ll see tables referred to as relations, rows as
tuples, and columns as attributes. This is the language of the relational data model,
the mathematical model that SQL databases (imperfectly) implement.

The relational model allows you to define data structures and constraints that
guarantee the integrity of your data (for example, by disallowing values that don’t
accord with your business rules). The relational model also defines the relational
operations of restriction, projection, Cartesian product, and relational join
[Codd 1970]. These operations let you do useful things with your data, such as
summarizing or navigating it.

Each of the operations produces a new table from a given table or combination
of tables. SQL is a language for expressing these operations in your application
(therefore called a data language) and for defining the base tables on which the
operations are performed.

You write SQL DDL statements to create and manage the tables. We say that DDL
defines the database schema. Statements such as CREATE TABLE, ALTER TABLE, and
CREATE SEQUENCE belong to DDL.

You write SQL DML statements to work with your data at runtime. Let’s describe
these DML operations in the context of tables from the CaveatEmptor application.

In CaveatEmptor, we naturally have entities like item, user, and bid. We assume
that the SQL database schema for this application includes an ITEM table and a BID
table, as shown in figure A.1. The datatypes, tables, and constraints for this schema
have been created with SQL DDL (CREATE and ALTER operations).

Insertion is the operation of creating a new table from an old table by adding a
row. SQL databases perform this operation in place, so the new row is added to the
existing table:

insert into ITEM values (4, 'Fum', 45.0)
An SQL update modifies an existing row:

update ITEM set INITIAL_PRICE = 47.0 where ITEM_ID = 4

ITEM_ID NAME

1
2

Foo
Bar ITEM_ID AMOUNT

1
1
2

BID_ID

1
2
3

INITIAL_PRICE

2.00
50.00

10.00
20.00
55.50

3 Baz 1.00

ITEM

BID

Figure A.1
The ITEM and BID tables
of an auction application
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

380 APPENDIX A

SQL fundamentals

A deletion removes a row:

delete from ITEM where ITEM_ID = 4

The real power of SQL lies in querying data. A single query might perform many
relational operations on several tables. Let’s look at the basic operations.

First, restriction is the operation of choosing rows of a table that match a particu-
lar criterion. In SQL, this criterion is the expression that occurs in the where clause:

select * from ITEM where NAME like 'F%'

Projection is the operation of choosing columns of a table and eliminating duplicate
rows from the result. In SQL, the columns to be included are listed in the select
clause. You can eliminate duplicate rows by specifying the distinct keyword:

select distinct NAME from ITEM

A Cartesian product (also called a cross join) produces a new table consisting of all
possible combinations of rows of two existing tables. In SQL, you express a Carte-
sian product by listing tables in the from clause:

select * from ITEM i, BID b

A relational join produces a new table by combining the rows of two tables. For
each pair of rows for which a join condition is true, the new table contains a row
with all field values from both joined rows. In ANSI SQL, the join clause specifies
a table join; the join condition follows the on keyword. For example, to retrieve
all items that have bids, you join the ITEM and the BID table on their common
ITEM_ID attribute:

select * from ITEM i inner join BID b on i.ITEM_ID = b.ITEM_ID

A join is equivalent to a Cartesian product followed by a restriction. So, joins are
often instead expressed in theta style, with a product in the from clause and the join
condition in the where clause. This SQL theta-style join is equivalent to the previous
ANSI-style join:

select * from ITEM i, BID b where i.ITEM_ID = b.ITEM_ID

Along with these basic operations, relational databases define operations for aggre-
gating rows (GROUP BY) and ordering rows (ORDER BY):

select b.ITEM_ID, max(b.AMOUNT)
from BID b
group by b.ITEM_ID
having max(b.AMOUNT) > 15

order by b.ITEM_ID asc

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX A 381
SQL fundamentals

SQL was called a structured query language in reference to a feature called subselects.
Since each relational operation produces a new table from an existing table or
tables, an SQL query might operate on the result table of a previous query. SQL lets
you express this using a single query, by nesting the first query inside the second:

select *
from (
 select b.ITEM_ID as ITEM, max(b.AMOUNT) as AMOUNT
 from BID b
 group by b.ITEM_ID
)
where AMOUNT > 15
order by ITEM asc

The result of this query is equivalent to the previous one.
A subselect may appear anywhere in an SQL statement; the case of a subselect in

the where clause is the most interesting:

select * from BID b where b.AMOUNT >= (select max(c.AMOUNT) from BID c)

This query returns the largest bid in the database. where clause subselects are often
combined with quantification. The following query is equivalent:

select * from BID b where b.AMOUNT >= all(select c.AMOUNT from BID c)

An SQL restriction criterion is expressed in a sophisticated expression language
that supports mathematical expressions, function calls, string matching, and even
more sophisticated features such as full text searches:

select * from ITEM i
 where lower(i.NAME) like '%gc%'
 or lower(i.NAME) like '%excellent%'
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

ORM
implementation

strategies
382

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX B 383
ORM implementation strategies

In this appendix, we’ll provide some insight into Hibernate internals; we’ll show
you how Hibernate detects object state changes and what techniques other solu-
tions use. An ORM user generally shouldn’t care about this detail, but the reality is
sometimes different; hence it may have some impact on your development process.

At runtime, the ORM implementation interacts with instances of persistent
classes to populate property values and detect state changes made by the applica-
tion (dirty checking). The ORM implementation must also detect access to lazy
associations. Traditionally, there were a number of different ways of implement-
ing this interaction, many of which intruded on the implementation of the
domain model. Inheritance from generated source code, source code process-
ing, compiled bytecode processing, and runtime reflection have all been used.
The strategy (or the mix of strategies) chosen determines how transparent a tool
can be.

Before we compare these different techniques, we should mention that there are
two basic approaches to dirty checking and two views on exactly what gets persisted.

B.1 Properties or fields?

In object-oriented development, it’s good practice to access the attributes of a class
via accessor methods. This allows a class to have an internal representation of its
own state that’s different than the representation visible to its clients. In particular,
it allows a class like Calendar to have one internal representation and several exter-
nal views; it even lets a class like ComplexNumber use several alternate internal rep-
resentations while exposing a consistent view to clients. In addition, property
accessors allow the class to perform validation of new values when properties are
modified, or access authorization checks.

There is some disagreement over whether an ORM solution should work with
these externally visible property values, interacting with the class via its accessors or
directly with the internal instance variables. The Hibernate team considers it a very
good practice to decouple the persistent representation of a JavaBean from the
bean’s internal data structure. In particular, persistence of property values allows
the property implementation to be overridden in a subclass. So, by default, Hiber-
nate persists property values. Hibernate will access instance variables directly only
if you specify access="field" in the property mapping. We discourage this usage.

Of course, not all class attributes are meant to be public and visible to all clients.
Hibernate lets you declare accessors for persistent properties as protected, pri-
vate, or package visible.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

384 APPENDIX B

ORM implementation strategies

Regardless of the way persistent attributes are accessed, there are two possible
ways to implement the detection of modified object state for dirty checking: inter-
ception and inspection.

B.2 Dirty-checking strategies

The first approach, interception, has the ORM implementation interpose itself
between the application and the persistent object’s fields (or properties), inter-
cepting the assignment of new values to the fields. The second approach, inspection,
compares an object’s property values at the end of a transaction to a saved snapshot
of the state of the object when it was loaded from the database. Some people have
argued that interception might be expected to perform better than inspection, but
we have seen no evidence of this—our own tests show that the difference is negli-
gible, at most (at least, compared to other costs such as database access).

For dirty checking, Hibernate chooses the second approach, since it can be
implemented without the need for intervention at buildtime or class-loading time.
Unfortunately, the Java runtime environment doesn’t provide hooks to allow
generic code to intercept method calls or instance variable access. (Other inter-
preted languages do provide such functionality, so it’s curious that Java doesn’t.)
In Java, interception requires processing of the source code or bytecode at build-
time, or of the bytecode at class-loading time.

To avoid this requirement, Hibernate performs inspection of all persistent
objects associated with a session when the session is flushed. Hibernate (like any
ORM solution) does use interception to implement lazy association fetching.

We’ll now briefly consider how various ORM solutions implement interception
and/or inspection. This isn’t an exhaustive list of all possible approaches, but it
does cover the most popular possibilities, past and present.

B.2.1 Inheritance from generated code

This is the most intrusive approach. At development time, an abstract superclass is
generated from mapping metadata. You implement behavior and transient state
on a subclass. This approach works reasonably well in languages with support for
multiple inheritance, but it’s inappropriate for Java’s single inheritance model. It’s
certainly contrary to the notion of transparent persistence for POJOs. This should
be considered an old-fashioned approach; modern ORM implementations all use
some other means.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX B 385
ORM implementation strategies

B.2.2 Source-code processing

You can use buildtime source processing to implement interception. Usually, an
intermediate Java file is generated before compilation. (Theoretically, the proces-
sor could process the source in place by modifying the original file, but this
approach would be much less transparent to the developer.)

This strategy has two problems. First, line numbers reported in stack traces
and by the debugger won’t correctly reflect the original source code—they will
be line numbers of the intermediate enhanced code. On the other hand, the
processed source is available for you to debug if necessary, which might be an
advantage of this approach. Second, running the source processor might be a
hassle at development time. This concern doesn’t apply if you’re using an Ant
build during development—but it may be less convenient if you use an IDE with
incremental compilation.

B.2.3 Bytecode processing

Source-code processing is often clumsy in practice. A currently popular
approach is to process the compiled bytecode. Bytecode processing is usually
implemented as a post-compile step in the build process. It can also be done at
class-loading time in environments where the persistence mechanism can gain
control of the classloader.

Bytecode processing is transparent at the code level and may be convenient if
your IDE is closely integrated with the enhancer. We prefer that an ORM imple-
mentation do all its work at runtime rather than buildtime, since this is the simplest
way to short-circuit any possible problems with toolset integration—but we’ll leave
you to make up your own mind. Of the buildtime techniques available, bytecode
processing is our preference.

B.2.4 Reflection

Runtime reflection has an image problem in the Java community: Reflective sys-
tems are perceived to be slow. This is partly untrue—reflection is much faster in
modern JVMs than in JDK 1.2—and partly irrelevant to our class of problems. Even
if reflection was really as slow as some people assume, the overhead is insignificant
compared to the cost of disk access and interprocess (even network) communica-
tion that dominates data access. There really is no good reason to avoid the use of
reflection in a persistence layer.

On the other hand, there is one excellent reason to choose reflection over other

techniques such as code generation: Reflection doesn’t intrude on the build cycle

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

386 APPENDIX B

ORM implementation strategies

or on the performance of system initialization. This has a definite positive effect on
developer performance.

Early versions of Hibernate used reflection exclusively for interaction with the
domain objects. This solution was popular with users and was shown to cause only
a slight performance overhead. However, JDK reflection was found insufficient
when it came to the problem of lazy fetching.

To implement lazy fetching of associations, Hibernate uses proxies. A proxy is an
object that implements the public interface of a business object and intercepts all
messages sent to that object by its clients. In the case of Hibernate, interception is
used to load the proxied object’s state from the database the first time it’s used.

For proxying many-valued associations, Hibernate uses implementations of the
collection interfaces defined in java.util. For single-point associations (an object
reference to a user-defined class), more sophisticated machinery is required.

Java provides java.lang.reflect.Proxy for JDK 1.3 and above. An instance of
Proxy may be instantiated at runtime, implementing a given list of interfaces. This
solution is great if your persistent objects are accessed by clients only via an inter-
face, but what if the persistent class doesn’t implement an interface at all? You
don’t want to force the unwieldy EJB-style local interfaces on your POJOs. They’re
supposed to be plain, remember!

So, if Java reflection can’t solve all your problems, what option remains?

B.2.5 Runtime bytecode generation

Fortunately, exactly when the Hibernate team needed it, another open source
project came along and neatly solved this problem. The CGLIB project describes
itself as a “code generation library,” but we prefer to think of it as an alternative
reflection package for Java—a replacement for java.lang.reflect.

CGLIB uses runtime bytecode generation to implement some of the same fea-
tures provided by the Java reflection API, only more efficiently. Most important,
CGLIB can create proxies that inherit a class, as well as implement interfaces! This
allows Hibernate to implement lazy association fetching almost completely trans-
parently. At runtime, clients may hold a reference to a proxy that is a generated
subclass of the associated persistent class. When the client invokes a method of the
proxy, Hibernate intercepts that method call and loads the state of the proxied
object from the database.

For classes with all nonprivate property accessor methods, CGLIB also can be
used to bypass reflection and get/set property values with normal Java method

invocation (in generated bytecode). Hibernate uses this feature whenever possible.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX B 387
ORM implementation strategies

Some Hibernate users found that the bytecode generation step, which occurs
at system-initialization time, was slow in earlier versions of Hibernate. The cur-
rent release of Hibernate integrates CGLIB 2.0, which vastly improves the perfor-
mance of bytecode generation and helps reduce the startup time of the
Hibernate application.

CGLIB is an amazingly useful library. If you have generic programming prob-
lems, we encourage you to see if CGLIB can help.

B.2.6 “Generic” objects

Some persistence layers, which we hesitate to consider ORM implementations, per-
sist objects consisting of a dynamic set of properties—collections of name/value
pairs. (Some even encourage you to extend the dynamic class with application
classes that add typesafe property access.) We won’t pay much attention to this kind
of approach since we’re most interested in persistence for POJOs. However, this
approach fills its own important niche: metadata-driven applications. Typesafe
domain models aren’t appropriate for applications where the business model is
defined in metadata.

A great example of this approach is the OFBiz entity engine. But Hibernate 3
(which is in an early stage of development at the time of this writing) supports this
kind of application by allowing domain models to be represented as a graph of
Maps containing property name/value pairs.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Back in the real world
388

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX C 389
Back in the real world

Hibernate, as an open source project, has a different relationship with its users
than a traditional software company that sells software licenses to its customers.
The users take responsibility for the project, but even more interesting (and some-
times entertaining) is the fact that all free support is made public. This gives us the
opportunity to discuss real-world problems—questions asked by actual users. As we
all know, you can’t avoid all problems by reading good books and documentation
before you begin a project. All of us have struggled with unsolvable problems;
often, asking for help in a user forum is the best option.

The same is true for the Hibernate users, so we’d like to show you some of the
questions asked and discuss possible answers. There is often a big difference
between book theory and the daily reality as a software developer. So, we’ll keep
things in perspective and show you that you aren’t alone in a “Dilbert” world.
Read on.

C.1 The strange copy

Due to some strange requirements from our Oracle DBAs, I cannot access our databases
“live”; I must copy the data from Oracle to a local MySQL database (yes, it’s very lame
but totally out of my control). I have written a utility to do this (not using Hibernate,
just straight JDBC as it’s “legacy”). The problem that I run into is that I run this via
cron, outside of the web app and again not using Hibernate, and when it is done run-
ning, the web app cannot access the database for a while (until a cache timeout?).

There are two problems here. The first is the DBA and the requirement to copy to
a local MySQL database. This is a strange requirement, and we can’t imagine why
it exists. Remember that many commercial databases have free developer
licenses—if you can’t switch databases, use Hibernate for the data import and
export. Hibernate has an experimental XMLDatabinder feature, which can serialize
a graph of persistent objects to an XML file. The ReverseXMLDatabinder is then
used to restore the saved file, saving the objects to a database. This works cross-
platform with all Hibernate supported databases. Search the Hibernate website
and forum for tips on XML databinding.

Your real problem looks like MySQL is locking (and not releasing) the tables for
the import, a question that’s best answered by the MySQL community or company.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

390 APPENDIX C

Back in the real world

C.2 The more the better

We’ve got a table with 700 columns. This table is in 3rd normal form, as far as I can
tell. We could break chunks of cols off to separate tables, but they would have 1:1 rela-
tionships with “mother” :-). Would this be preferable to 1 table with 700 cols?

First, database performance depends on many factors, not necessarily the number
of columns in a table. We’re much more interested in reducing row reads, not col-
umn reads; if you have to worry about “too many columns,” try to use projection
queries. However, large tables may have an impact on caching on the database side,
because you get fewer rows into the block buffer cache if each row has 700 col-
umns. This makes it even more important to tune your database properly, espe-
cially indexed access.

The second problem is the amount of data the JDBC driver has to deal with:
Every time you load or save an object, huge SQL statements (in the range of several
kilobytes of text) have to be sent. Also think about the mapping of a query result
to persistent Hibernate objects: The JDBC driver may create a large number of
objects behind the scenes when Hibernate extracts the data from the result set.
This is usually a very fast operation and negligible compared to the other costs in
a typical data-access scenario. It’s a factor if you have an enormous number of col-
umns, but at least it scales linearly.

Do some performance tests with straight JDBC and SQL and see how long they
take. Also consider how often the query will run in your application, so you don’t
spend too much time optimizing unnecessarily.

C.3 We don’t need primary keys

I have a simple question. If I have a table which has no key definition, and if I try to
map this, what happens? I mean, can Hibernate handle tables without key definitions?
Actually, I already tried such a thing, because I have some tables to map which have no
keys, and I am not allowed to change. I could save new instances, but in querying there
were problems.

Relational products that don’t enforce a primary key attribute definition for a rela-
tion are broken (that is, they allow bags of tuples, not sets). A relational value is a
set of tuples, hence no duplicate rows are allowed. Unfortunately, many SQL data-
bases are broken that way; they allow duplicate rows and, in general, make primary
keys optional.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX C 391
Back in the real world

You need a primary key for a table to work with Hibernate; otherwise there is no
way to distinguish rows. This is true not only for Hibernate but for every other
system (and user) of your database. We recommend that you clean up the data-
base. As a last resort, you can use a composite key mapping in Hibernate and
include all columns as a composite key.

C.4 Time isn’t linear

I realized that after daylight savings took effect, every call to update an entry into my
database created before daylight savings took effect would result in a StaleObject-
StateException.

If your timestamp datatype doesn’t include a daylight saving time attribute, you’ll
run into problems with Hibernate’s automatic versioning.

There aren’t many reasons to use a timestamp instead of a simple version num-
ber. One might be the additional information that can be used for reporting or ad-
hoc queries with a “last updated” timestamp. The version is a meaningless internal
number, and meta-information such as time of creation, last updated, and updated by
have to be added in additional columns. With a requirement like this, consider a
full audit log implementation (see section 8.3.2, “Audit logging”).

A version property is less problematic for automatic versioning; hence we rec-
ommend it.

C.5 Dynamically unsafe

I’m just starting with Hibernate, and the concept of using Dynabeans appeals to me.
I’m seriously considering it. I came from an environment that took the opposite approach
of Hibernate: Everything used a database object; it contained a set of table objects, which
contained Record objects, which contained Field Objects. This basically meant we didn’t
need getters or setters on the back end. I practically resent their presence to be honest! I’m
trying to find some way to do that with Hibernate. Any chance?

Hibernate supports Maps as dynamic components. Keep in mind that this is no
longer a data model that ensures data integrity, which should be the primary goal
of any database. Such a data model of unprotected values is only good enough for
quick prototyping. However, prototypes often aren’t thrown away but are used as a
foundation for the real implementation in a project. If this setup isn’t changed to
a normalized relational data model, serious problems may appear in the future,

including unpredictable behavior, lost data, and expensive maintenance. However,

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

392 APPENDIX C

Back in the real world

it might be acceptable to use this dynamic approach in some use cases (usually
exceptional ones), in addition to a solid data model.

Keep in mind that data (and a database) usually lives much longer than any
application. With a dynamic map model, the semantics of the data structure and
the (often very crude) handcoded data-integrity rules will be lost when an applica-
tion is no longer useful. Costly and time-consuming data migration is often the
result. If the time to market is really a problem and an argument for unsafe data,
use Hibernate instead and save time from the start without losing any power.

C.6 To synchronize or not?

I’ve been using Hibernate for a while, and I really like it. But I find that there is a major,
major issue. Synchronization. We lose data! We have a web based application where dif-
ferent people can simultaneously add or update data—we have to synchronize!

Don’t lock or in any other way serialize access to objects in the application. You
don’t have to do anything to ensure that concurrent modification doesn’t destroy
your data; that is the job of Hibernate and the underlying database.

This question is sometimes asked as follows: “How does Hibernate ensure that
an object modified in Session A is synchronized with the same loaded object in
Session B?” It isn’t the same object. Both objects may have the same database iden-
tity, but because they’re loaded in different Sessions, they’re two distinct instances
in the JVM. This is called transaction-scoped identity, and there is no need to synchro-
nize two objects that have only the database identity in common. In other words,
all operations in concurrently running transactions are isolated from each other.
So how do you solve this concurrent access to the same resource?

Hibernate uses existing mechanisms present in any database-management sys-
tem to resolve the conflict. The Hibernate Session inherits the transaction
semantics and transaction isolation level of the standard JDBC connection it’s
started with. This means you’ll experience the typical problems of not having
fully isolated access to a shared resource (dirty reads, nonrepeatable reads, phan-
tom reads), depending on the transaction isolation level of your database con-
nection and transaction. Conflicting updates, however, are resolved with an
optimistic approach at commit time (using a version check). With Hibernate’s
automatic versioning, you can ensure that an object loaded and modified in Ses-
sion A can’t overwrite the changes made to an object in Session B if the database
transaction of Session B (manipulating the “same” object) was committed earlier

than Session A’s. In rare cases, and when handling critical data, you may use a
pessimistic approach. By setting a pessimistic exclusive lock (using a LockMode) in

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

APPENDIX C 393
Back in the real world

the database, you prevent Session B from loading the “same” object; it must wait
(or immediately fail) until Session A releases the lock.

The question sometimes also refers to an automatic update of a loaded object
if it has been modified while it’s loaded. For example, if Session B displays an
object to the user and Session A modifies that object, the display in Session B
must be updated.

Hibernate has no automatic push mechanism; therefore, the application has to
poll the database for updates. This is consistent with the transaction semantics of
Hibernate and the database. You may in rare cases implement a Hibernate Inter-
ceptor and trigger a refresh() call in all other units of work if an object has been
modified, but doing so will always require synchronized access that might become
a bottleneck for scalability.

C.7 Really fat client

Our application will use JWS technology. We will use Hibernate and a J2EE architec-
ture, and we would like to keep all Hibernate stuff on the server side. We noticed that if
we use a proxy, we miss some Hibernate classes while de-serializing the object on the cli-
ent side. Do we have to put all of Hibernate and related libraries on the client? They are
quite big.

You only need the following libraries (about 1 MB) on the client to successfully
deserialize a detached object graph: hibernate2.jar, odmg.jar, commons-log-
ging.jar, and cglib2.jar. (It might also be possible to package a minimalistic
hibernate-client.jar.)

Keep in mind that the leaf nodes of the graph are uninitialized collections or
associations to proxies. Accessing the graph past these nodes on the client will give
you an exception. The solution for this problem is to fully initialize all required
objects before sending them to the client. We don’t recommend (and Hibernate
doesn’t implement) any automatic lazy loading triggered by client code. Data
access, graph closures, and transaction semantics should be well known in any
application and not be ad hoc.

Use the good old data transfer object pattern if client code size is the most
important issue. You’ll lose the main advantage of detached POJOs with Hiber-
nate: automatic reattachment to a new transaction with an optimistic concur-
rency check.
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

394 APPENDIX C

Back in the real world

C.8 Resuming Hibernate

I start my PC, after completion of my work, I Hibernate it. After some time when I resume
my PC, it will run within no time. The problem is that when I resume my PC if electricity
is fluctuated, and the PC is suddenly off without Hibernating, is it possible in Windows
XP that I restore my PC?

Frankly, we don’t know. However, we take great care not to make Hibernate appear
to be a silver bullet. It isn’t a solution that will make all your database (or Windows
XP) problems go away magically.

Writing database applications is one of the more challenging tasks in software
development. Hibernate’s job is to reduce the amount of code you have to write for
the most common 90 percent of use cases (common CRUD and reporting). The
next 5 percent are more difficult; queries become complex, transaction semantics
are unclear at first, and performance bottlenecks are hidden. You can solve these
problems with Hibernate elegantly and keep your application portable, but you’ll
also need some experience to get it right.

Hibernate’s learning curve is high at first. In our experience, a developer needs
at least two to four weeks to learn the basics. Don’t jump on Hibernate one week
before your project deadline—it won’t save you. Be prepared to invest more time
than you would need for another web application framework or simple utility.

Finally, use SQL, JDBC, and stored procedures for the 5 percent of use cases you
can’t implement with Hibernate, such as mass data manipulation or complex
reporting queries with vendor-specific SQL functions.

Use the right tool for the right job. (And try reinstalling Windows XP.)
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

references
[Ambler 2002] Ambler, Scott. 2002. Mapping Objects to Relational Databases.

AmbySoft Inc. white paper. www.ambysoft.com/mappingObjects.html.

[Codd 1970] Codd, E. F. 1970. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM 13, no. 6 (June): 377–387. http://
doi.acm.org/10.1145/362384.362685.

[Date 2004] Date, C. J. 2004. An Introduction to Database Systems, 8th ed. Boston:
Pearson/Addison Wesley.

[Evans 2004] Evans, Eric. 2004. Domain-Driven Design. Boston: Addison-Wesley.

[Fowler 1999] Fowler, Martin. 1999. Refactoring: Improving the Design of Existing
Code. Reading, MA: Addison-Wesley.

[Fowler 2003] ———. 2003. Patterns of Enterprise Application Architecture. Boston:
Addison-Wesley.

[Fussel 1997] Fussel, Mark L. 1997. Foundations of Object Relational Mapping.
ChiMu Corporation. www.chimu.com/publications/objectRelational/.

[Gamma et al 1995] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlis-
sides. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley.

[Marinescu 2002] Marinescu, Floyd. 2002. EJB Design Patterns: Advanced Patterns,
Processes, and Idioms. New York: John Wiley.

[Tow 2003] Tow, Dan. 2003. SQL Tuning. Sebastopol, CA: O’Reilly.
395

[Walls and Richards 2004] Walls, Craig and Norman Richards. 2004. XDoclet in
Action. Greenwich, CT: Manning.

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

index
A

abstract classes 104
accessor methods

adding logic to 73
class attribute access with 383
command pattern 318
POJO 68
public visibility 359
syntax 319
validation and 73

ACID properties 322
action servlets, writing 298
aggregate functions 272
aggregations 93, 272, 380
aliases 251, 262
AndroMDA 349
ANSI SQL

joins 380
standards 162

Ant task 356, 363–364, 375
APIs (application programming

interfaces)
Auditable 341
BusinessException 310
CompositeUserType 206
Configuration 39
Criteria. See Criteria APIs
FetchMode 260–261
FlushMode 160
IdentifierGenerator 41
Interceptor 158, 343–347
Lifecycle 40
LockMode 166

PropertyAccessor 80
Query. See Query APIs
Session. See Session API
SessionFactory. See SessionFac-

tory API
Transaction 39, 158–160
Type 40
UserType 203–205, 337–338
Validatable 40

application transactions
avoiding reassociations with

new sessions 325
choosing implementation

approach 329
defined 168, 322
demarcating beginning

of 327
description 156
ensuring clean Hibernate

sessions 327
flushing changes to the

database 328
granularity of 172
handling concurrent 168
Hibernate session closing 326
implementing the hard

way 322–323
use case 321
using detached objects 324
using long sessions 325–326
ways to implement in Hiber-

nate applications 320
applications

architecture 296

content management-
type 178

enterprise 120
financial 178
functionality

requirements 155
increasing response time

of 311
layered, design of 295–320
legacy 250
nonexclusive access

scenarios 178
persistence layers, interaction

with 115
persistent state 115
scalability 161
servlet-based 311
web 120

association classes 225
association tables 149, 226, 366
association-level cascade

style 133
associations

bidirectional 108
defined 220
ensuring full

initialization 300
fetching 260–261
foreign key 221–222
joining 258–261
lazy fetching 301, 386
link tables 14
management of 105
many-to-many 13, 71,
397

MatchMode 255
persistence manager 126

cache systems and legacy 178
client/server 41

225–231, 366–367
many-to-one 13, 107, 234–235

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

398 INDEX

associations (continued)
mapping 133, 220–235
mapping for lazy

initialization 286
multiplicity 106
one-to-many 13, 69, 108,

231–232
one-to-one 14, 220–223
in POJOs 69–71
polymorphic 105, 234–235,

237–238
primary key 223–224
proxying many-valued 386
recursive 62
ternary 230
unidirectional 107, 232

atomicity 155, 322
attribute-oriented

programming 372–376
attributes

accessing persistent 383
columns as 379
embedding in source code

with XDoclet 350
index mapping 354
inverse 109–110
XML mapping 354

audit logging 340–341
Auditable API 341
AuditLogRecord class 341
authorization check access 383
auto commit mode 157
automated persistence 65

B

bag collections 212, 226, 228,
231

batch fetching 145, 148, 287
BLOB 199
BMP (bean-managed

persistence) 20
bottom-up development 350
buffers, servlet 305
buildtime source

processing 385
business domains 61
business keys 124
business layers 17, 36

migrating into domain
models 306

moving to the placeBid()
method 310

separation from control
logic 305

tiers of, separating from
web tiers 312

business methods 8, 67
business models 61
business rules 296
business transactions 168
by value equality 123
bytecode processing 385

C

cache management 119
cache miss 176
cache providers 184–185, 187
cache regions 187
caching

caution 182
cluster setup 189–194
concurrency and 177, 183
eviction 181
eviction policies 188
first-level 178, 180
local setup 187
maintaining consistency

across clusters 298
methods used for

lookups 334
object identity and 176
performance with 175
policies 182, 185
queries 176, 180, 290–291
reference data 179
second-level 178–180, 182,

193
setting up replicated 189–194
transaction isolation and 164,

178–179
types of 176, 178

candidate keys 90
Cartesian products 267,

379–380
cascade attribute 110
cascade styles 133, 138

CGLIB (code generation
library) project 386

classes
abstract 104
association 225
attribute access 383
authorization check

access 383
caching and 182
coarse-grained 196
component, writing 217
DTO 311
entity 196
external state

representation 383
finder 360
fine-grained 196
helper 18, 296
internal state

representation 383
modified property values

validation 383
parallel hierarchy 312
persistence capability 115
persistent 31, 306
table per concrete 97–98
tables per hierarchy 99–100
utility 18, 296
value type 196

classpath 47
clauses, rules governing 274
client/server applications 41
CLOB 199
cluster scope cache 176–178
clustered operations 178
cluster-safe design 298
CMP (container managed

persistence) 20
CMR (container-managed

relationship) 70, 106
CMT (container-managed

transactions) 49, 157, 159
coarse-grained services 313
code smells 312
CodeGenerator 350
collection caches 186
collection states 123
collection wrappers 148, 150
collections

bag 212, 226, 228, 231

business logic

domain models 6
cascade, all-delete-orphan 112
cascading persistence 133

columns, avoiding not-
null 219

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

INDEX 399

collections (continued)
component 217–220,

229–230
fetching 261
fetching strategies for

147–148
filtering 279–280
indexed 232
list 213, 228
map 214
nonindexed 231
ordered 215–216
persistent 215
polymorphic 236–237
set 211
sorted 215
value-type, mapping 211–220

columns, avoiding not-null 219
command handlers 316
command line tool

execution 363
comparison operators 253–254
components

collections of 217–221,
229–230

unidirectional 96
composite keys 92, 330–335
CompositeUserType API

206–208
composition 93
concern leakage 65
concurrency control 161
concurrency strategies 183–184
concurrency, reducing 311
concurrent data access 161, 167
concurrent requests, problems

with 328
Configuration API 39, 42
Configuration class 42
configurations

overriding 52
startup 42
with properties 45
with XML files 51

container-managed persistence
(CMP) 20

container-managed relationship
(CMR) 70, 106

container-managed transactions

converters 202
CORBA transaction service 158
correlated subqueries 282
createAlias() method 264
createCriteria() method 263
createQuery() method 243
createSQLQuery() method 243
Criteria APIs

comparison operators
253–254

defined 39
FetchMode 260
implicit joins 266–267
logical operators 256
MatchMode 255
method-chaining 244
nesting 263
polymorphic queries 252
purpose of 243
QBC and 242
QBE and 278
report queries 269
restrictions 252
results ordering 257
SQL function calls and 255
string matching 255
theta-style joins 268
where clause and 254

Criterion framework 142
cross joins, SQL 380
cross-cutting concerns 16, 64
CRUD (create, read, update,

delete) 2
automation vs hand-coding 2
Hibernate APIs 36
persistence manager API

and 126
custom mapping types 202

D

DAO (Data Access Object) 18
data

externalization 312
import and export 389
unsafe 391

data access objects (DAOs)
automatic generation 360
command patterns and 319

encapsulating persistence
code with 307

Hibernate session
sharing 309

data definition language (DDL),
SQL 379

data language 379
data manipulation language

(DML), SQL 379
data transfer objects (DTOs) 21,

311–312
data transfer, DTOs and 313
database identifier equality 123
database identifier property 123
database identity 32, 88

persistent instances and 117
relationship with Java

equality 122
relationship with Java

identity 119
database management systems 6

schemas for SQL-based 351
database schemas, SQL 357
database transactions 127

atomic 156
auto commit mode 157
DAOs and 309
declaring boundaries of 158
exception handling 159
flushing the Session state 160
granularity of 172
JDBC API 157
JDBC connection release 159
JTA 157
managed environments 159
manager 157
non-managed

environments 159
opening ad hoc 301
overview 156
roll backs 159, 163
transaction demarcation 156

databases
JDBC communication

with 158
legacy schemas 174
lock tables 172
relational 3
triggers for 339–340

datasources 48

(CMT) 49, 157, 159

control logic 305
database transaction

sharing 309
daylight savings and automatic

versioning 390

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

400 INDEX

DDL (data definition lan-
guage), SQL 351, 379

DDL schemas
Ant task and generation

of 356
creating with hbm2ddl

355–360
generation prerequisite 352
generation tool for 351
mapping metadata for 352
ORM reproduction from 351
tools for 350

delete() method 118, 130
deletion, SQL 380
detached instances

distinguishing from transient
instances 138–139

making transient 130
selective reassociation of 121
updating persistent states

of 127
detached lifecycle states 196
detached objects

defined 118
reusing references to 121
updating 127

detachment operation,
Hibernate 119

development processes
AndroMDA 349
bottom-up 350
meeting in the middle 350
middle-out 350
questions 389
roundtripping 351
tools for 349
top-down 350

dirty checking 35, 74, 383–384
dirty read transaction issue 162
disconnect() method 325, 327
DML (data manipulation lan-

guage), SQL 379
document type definition 35
domain models

creating smart 306
defined 61
implementing 64–75, 196,

202
instances, working with 323
integration of 305–306

migrating business logic
into 306

reproduction from DDL
schemas 351

typesafe 387
unit testing and 64
web tier communication

with 312
DTD 76
DTO 21, 311–312
dumb data-holding objects 306
Dynabeans 391

E

eager fetching 145, 147–148,
261

EHCache 184
EJB command patterns 316–320
EJB containers 311–320
EJB session beans. See session

beans (EJB)
EJBs (Enterprise Java Beans)

development noise 316
entity beans 20

entities
binding persistent 247
database-level 197
defined 196
hidden 197
lifecycles of 93, 196
root 243, 264
software-system relevant 61
value types compared to 93

entity associations, mapping 374
entity beans

bean-managed persistence
(BMP) 20

code generation 364
container-managed persis-

tence (CMP) 20
DTOs and 20, 311
POJOs compared to 67
systems that use 311

entity type systems 196
enumeration 209–211
environments

infrastructure
requirements 295

equality 122
equals() 87
equals()/hashCode()

method 122, 125, 334, 359
evict() method 119
exception handling 159, 303,

305
exceptions, wrapped 316
expiry policies 187
expressions, SQL 253, 381

F

failures
accessing databases 296
application infrastructure 315
business rule 315
request checks 296

fetching strategies
collections and 147–148
default association 146
eager 261
fetch depth 149
global 149
lazy 261
object retrieval 140, 143–144
runtime association 262
selecting in mappings

146–150
types of 143–144

filters, servlet 304, 314
finder attribute 361
finder class 360
finder methods 360–362
fine-grained interprocess

calls 313
fine-grained object models 92
flushing 160
FlushMode API 160
foreign key associations

221–222
foreign keys 268
from clauses 252, 280–281

G

get() method 140
getNamedQuery() method 249
getSession() method 314
mapping to given
schemas 350

managed 41, 48
non-managed 42, 45

getSessionFactory()
method 314

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

INDEX 401

getter methods 73–75, 125
group by clauses 273
grouping, SQL 380

H

hashCode() method 122, 125,
334

having clauses 274
hbm2ddl (SchemaExport)

configuration options 355
DDL schema generation

with 351, 355–357
global control of 356
location of 352
mapping metadata

preparation 352
middle-out development

with 350
running 352
top-down development

with 350
uses of 351
XML mapping attributes

for 354
hbm2java (CodeGenerator)

annotated Java class genera-
tion with 351

bottom-up development
with 350

config option 363
configuration file for 362
customizability 358
finder method

generation 360
meta-attributes and 359–360
Middlegen generation of

meta-attributes for 370
middle-out development

with 350
output option 363
POJO persistent class genera-

tion with 350, 358
renderers of 362
running 363
uses for 358

Hello World 31
helper classes 18, 296
Hibern8IDE application 250

Q & A 389–394
uses of 295

Hibernate extensions
package 352

Hibernate Query Language
(HQL) 139, 141, 242

HibernateUtil class 296, 327,
362

Hibernator plugin 250
hot standbys 192
HQL (Hibernate Query

Language) 141
aggregation, using 272
aliases 251
aliases and joins 262–265
collection filters 279–281
comparison operators

253–254
complex queries 250
defined 139
distinct results, getting 271
dynamic instantiation 271
eager fetching 261
expressing queries with 242
fetch join and 260–261
grouping 273
implicit joins 265
keywords, writing 251
logical operators 256
polymorphic queries 251
projection 270–271
restricting groups with

having 274
restrictions 252
results ordering 257
SQL function calls and 255,

272
string matching 255
subqueries 281
theta-style joins 267
where clause and 254

HttpSession 38

I

identifier attribute 32
identifier property 33
IdentifierGenerator API 41, 91
identity scopes 119

immediate fetching 144
inconvenient column type 337
index mapping attribute 354
indexed collections 232
inheritance

generated code 384
mapping 97

initialization
ensuring full 300
lazy 300

insertions, SQL 379
inspection, ORM 384
instance variables, accessing 383
instances

detached 124, 138–139
equality of 124
mixing 122
nontransactional 117
persistent 124
transient 138–139
value-typed 197

instantiation, dynamic 271
interception 65, 384–385
Interceptor API 40, 343–345
interceptor patterns 314
Interceptor, Hibernate

persistence 295
interfaces. See APIs (application

programming interfaces)
inverse attribute 109
isolation

levels 161–163, 165
isolation, transaction

by locking 161
cache providers and 189
caching and 178–179
description 161
levels 161–163, 165
permissible phenomena

for 162
using multiversion concur-

rency control 161
iterate() method 245, 289

J

Java Beans
constructor 68
decoupling persistent

representations 383

Hibernate

as an open source project 389
identity, database 32
ignoreCase() method 278

DTOs as 311
POJOs 67–68

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

402 INDEX

Java BluePrints (Sun) 307
Java equality 122
Java Management Extensions

(JMX) 55
Java Naming and Directory

Interface (JNDI). See JNDI
Java object identity 119
Java Transaction API. See JTA

(Java Transaction API)
Java type systems 197
Java-based architecture 295
JavaBeans

constructor 68
POJOs and 67

JBoss 56, 295
JBossCache 184, 189–190, 192
JCA 295
JDBC (Java Database Connectiv-

ity)
abstraction of functionality 37
communication with

databases 158
connection pool 45
connection release from

transactions 159
connections, changing the

default isolation levels
for 165

marking transaction bound-
aries with APIs 157

persistent objects and 127
RowSet 6
SQL and 5
statement interface 16

JDBC Connections 325
JDBC drivers 246
JDBCTransactionFactory 49
JMX (Java Management

Extensions) 55, 295
JNDI (Java Naming and Direc-

tory Interface)
Hibernate integration

with 295
J2EE applications and 37
SessionFactory binding 53
with Tomcat 54

join conditions 258, 380
joins

ANSI-style 258

from clause and 259
implicit 259, 265
inner 258
means of expressing 259
outer 258
overview 258
relational 379
table 258
theta-style 259, 267, 380
using aliases with 262
where clause and 259

JTA (Java Transaction API)
CMTs and 157
distributed transactions

and 157
Hibernate integration

with 295

K

keys
composite 333–338
foreign 221–222, 268
natural/primary 90–92,

331–332
surrogate 91

keywords 251

L

latency 311
layered architecture 17
layers

application 295
business 36
initializing 150–151
persistence 36
presentation 17
separating business and

presentation 296
lazy associations

access detection 383
fetching 384

lazy fetching 144, 146–147,
301, 386

lazy initialization 300
LazyInitializationException 300,

329
leakage of concerns 65

legacy database schemas
changes needed 330
composite key mapping

333–338
integrating database triggers

with 339–340
Middlegen and 364–371
natural key mapping 331–332
optimistic locking and 174
problems with 330
required changes 331

libraries, Hibernate 319, 375,
393

Lifecycle API 40
lifecycle states 196
link tables 14, 149, 226
list collections 213, 228
list() method 244, 289
load() method 140
lock tables 172
lock() method 128, 324
locking

default strategy 165
isolation by 161
optimistic 169–172, 174
pessimistic 165, 171

LockMode API 166–167
locks held in memory,

avoiding 177
Log4j 55
logging

discussion 54
with Log4j 55

logic
adding to accessor

methods 73–74
business. See business logic
control 305
pageflow 305
ternary 253–254

logical operators 256
long Session 173, 325
long transactions 168
lost update transaction

issue 162

M

many-to-many associations
bidirectional 71, 227–228
cross 380
fetch 260–261

legacy applications 250
legacy data 330–342

component collections used
for 229–230

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

INDEX 403

many-to-many associations
(continued)

mappings 197, 225–232
restricting with

Middlegen 366–367
tables 197
unidirectional 225

many-to-one associations 107,
234, 266–267

map collections 214
mapping

at runtime 86
basic properties and class

78–84
bidirectional many-to-

many 227–228
column name 78
component collection 217
composite key 333–338
entity class 197
file name 78
formula 79
immutable properties 80
inheritance 97
legacy columns 337–338
log record 341
many-to-many

association 197, 225–232
metadata 75–76
metamodels 202
natural key 331–332
object/relational 75
one-to-many association

231–232
one-to-one association

220–224
package name 83
synthetic identifier 332
ternary association 230
unidirectional many-to-

many 225–226
unidirectional one-to-

many 232
mapping files, Hibernate 250,

350, 372–376
mapping metadata

automatic generation from
existing schemas 364

DDL generation and 352

preparation of 352–353
XDoclet generation 372

mapping types, Hibernate
basic 198, 200
built-in 198
custom, creating 202
date and time 199
enumerated 209–211
Java primitive 198
JDK 200
large objects 199
string 197
system 196
using 200–201

mass operations 181
mass updates 181
MatchMode API 255
MBean 56
memory exhaustion,

preventing 181
meta-attributes

adding to POJO source
code 358

description 371
generation of hbm2java-

specific 370
global 362
Xdoclet reading of 372

metadata 75
See also mapping metadata

metamodels 86, 202
method chaining 42, 244
methods

accessor 8, 32, 318, 359, 383
business 8, 67
finder 360–361
getter 74–75, 125
parameter-binding 245–246
setter 74–75

Middlegen
bottom-up development

and 350
database metadata mapping

with 364
declaring many-to-many asso-

ciations in 366–367
graphic modification of

options 366–369
GUI 364
hbm2java-specific meta-

legacy database schemas
and 364–371

mapping document creation
with 351

mapping generation
options 368–370

metadata graphical
customization 368

starting with Ant 364
models

business 61
domain. See domain models
object 61, 92

multi-layered architecture 296
multiplicity association 106
multiversion concurrency

control 161
MVC (Model/View/

Controller) 298, 305
MySQL 389

N

n+1 selects problem 15, 286,
301–305

named queries 249
natural key mapping 331–332
natural keys 90
navigation

bidirectional 218
object graph 139, 300
unidirectional 225–226

NIH (Not Invented Here)
syndrome 19

nonstrict-read-write concur-
rency strategy 183

non-transactional instances 117
not-null columns, avoiding 219
null values, testing for 254

O

Object Data Management Group
(ODMG) 21

object equality 87
object graphs

navigating 139, 300
retrieving 115, 143–144

object identity

generation customization with

Middlegen 368–371
attribute generation 370

Hibernate plugin for 370
caching and 176
definition 11

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

404 INDEX

object identity (continued)
object equality compared

to 87
scope of 119–120, 172

object models
created from business

models 61
fine-grained 92

object retrieval
by identifier and 139–140
fetching strategies 140,

143–144
Hibernate Criteria API

and 140, 142
HQL and 139, 141
native SQL queries and 140
object graph navigation 139
operation tuning 151
optimizing 286–293
QBC and 142
QBE and 143
techniques, list of 139
with Session 129

object states
detached 118
detection of, change in 383
persistent 117
transient 116
types of 116

object/relational mapping
(ORM)

as middleware 23
defined 22
development processes

349–351
full solutions 179
generic problems 25
implementations 116, 118,

383–387
levels 24
maintainability 27
metadata format of 75
object-level locking and 177
overview 23
performance 28
persistence lifecycles and 116
problems in 143
productivity 27
reproduction from DDL

schemas 351

object/relational
mismatches 115

object-oriented database sys-
tems (OODBMS) 21

objects
dereferenced 116
lifecycles 115
mapping 22
persistence 115
reattachment 121
retrieval. See object retrieval
states 116
synchronization of 392
transient. See transient objects
types of 93

one-to-many associations 69–71,
108, 231

one-to-one associations
220–224, 266–270

onFlushDirty() method 344
onSave() method 344–345
OpenSymphony OSCache 184
operations, mass 181
operators

comparison 253–254
logical 256

optimistic locking 169–170, 174
order by clauses 257
ordering, SQL 380
ORM. See object/relational map-

ping (ORM)
outer-join loading 145

P

pageflow logic 305
pagination 243
paradigm mismatch

cost 15
defined 7
entity associations 13
granularity 9
graph navigation 14
identity 11
inheritance 10
subtypes 10

parallel class hierarchies
smells 312

parameters
binding 245–250

parent/child relationships 111
persistence

automated 65
by reachability 131
context 300
defined 3
determining type needed 64
object-oriented 5
transparent 65

Persistence code 307
persistence layers

caching used by 176
finders and 360
handcoding with SQL/

JDBC 18–19
implementation of persistence

by reachability 131
metadata-driven applications

and 387
object/relational, perfor-

mance of 175
Persistence code isolation

in 307
persistence libraries 319
persistence lifecycles 116, 131
persistence manager (Session)

APIs 126
database transactions com-

pared to 120
identical object

guarantee 120
persistent state applications

and 116
responsibility 115
retrieving persistent

objects 129
persistence manager

interfaces 66
persistence-related code 295
persistent attributes,

accessing 383
persistent classes 31, 123
persistent instances

association with persistence
manager 117

caches in sessions 325
defined 117
new 117
primary key value 117
triggers combined with 339
vendor independence 28

named 246
positional 247

reassociation 118
sources of 117

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

INDEX 405

persistent instances (continued)
synchronization with

database 117
transactional 117
updating databases 117

persistent lifecycle states 196
persistent objects

defined 117
making transient 129
retrieving. See object retrieval
serializing graphs of, to XML

files 389
updating 129

pessimistic locking 165–166,
171

phantom read transaction
issue 162

POJOs (Plain Old Java Objects)
accessor methods 68
adding meta-attributes to

code 358–359
associations,

implementing 69–70
command patterns 316
DTOs as 311
Java Beans 66–68
making serializable 311
persistent class

generation 349–350,
358–364

writing 67–68
polymorphic associations 11,

105, 234–235, 237–238
polymorphic collections

236–237
polymorphic queries 251
polymorphism

mapping 234
overview 11

postFlush() method 344
prepared statements 28
presentation layers 17
primary key associations 223
primary keys 90, 268, 390
process scope cache 176–178
process-scoped identity 118–119
projections, SQL 379–380
property values, persistent 383
PropertyAccessor API 80
proxies

initialization of 150
lazy fetching and 146, 386

push mechanism,
automatic 393

Q

Q & A
accessing databases live 389
daylight savings and automatic

versioning 391
impact of large tables 390
libraries needed on

clients 393
MySQL table locking 389
primary keys, importance

of 390
resuming Hibernate 394
synchronization 392
using Dynabeans 391

QBC (query by criteria) 142,
242

QBE (query by example) 143,
242, 278

quantification 282, 381
queries

advanced techniques 276–285
basic operations of 380
building with string

manipulations 276
by example 276
caching 290–291
comparisons between

keys 268
complex 242
complex criteria 257
database-specific hints 242
dynamic 276–277
expressing with QBC 242
expressing with QBE 242
externalizing strings to map-

ping metadata 249
identifier value comparisons

with 268
iterating results 245, 289
listing results 244
named 249
native SQL 283–284
nested 381

object-oriented 242
optimizing 250
paginating results of 243
parameter binding 245
polymorphic 251
porting to mapping files 250
QBE and dynamic 278
reports 269
restrictions 252
results caching 176, 180
results ordering 257
root entities of criteria 243
simplest 250
storing 249
using aliases 251
using enumerated types

in 210
ways of expressing in

Hibernate 242
Query APIs

binding arbitrary arguments
with 247

creating a new instance
of 243

defined 39
externalization of persistence

concerns to 66
iterate() method and 289
list() method and 289
method-chaining 244
purpose of 243
testing 250

query by criteria (QBC) 142,
242

query by example (QBE) 143,
242

query executions 126

R

read committed isolation
level 162, 164

read uncommitted isolation
level 162–163

read-only concurrency
strategy 183

read-write concurrency
strategy 183

reconnect() method 325, 327

for classes 146
from load() methods 140

object reference comparisons
with 268

recursive associations 62
reference data 179

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

406 INDEX

reference to a detached
object 121

referential integrity,
guaranteeing 132

reflection 385
reflective systems 385
Registry pattern 53
relational data models 4, 15,

379
relational databases 3
relational joins 379
relational operations 379
relationship tables 149
relationships, managed 70
repeatable read isolation

level 162, 164
report queries

aggregation 272
defined 269
grouping 273
improving performances

with 275
projection 270–271
restricting groups with

having 274
restriction criterion, SQL 381
restrictions 252, 379–380
RMI (Remote Method

Invocation) 19
rollback 117, 159, 163
root entity (criteria

queries) 243, 264
roundtrip development 351
runtime bytecode

generation 386
runtime reflection 385

S

save() method 117, 127
saveOrUpdate() method 325
scaffolding code 69
SchemaExport 350
schemas

database 350
database management sys-

tems for SQL-based 351
DDL 351

mapping domain models to
given 350

Middlegen and legacy
database 364–371

SchemaUpdate 357
scope of object identity 119
searches

case-insensitive 255
string-based 255
wildcard 255

second lost updates problem
transaction issue 162

security, session beans and 313
select clauses

calling aggregate functions
in 273

calling SQL functions
from 272

changing results with 267
elements of results 271
grouping and 273
implicit joins and 259
projection and 270
rules governing 274
subqueries 281
using aliases in 263

selective reassociation of
detached instances. 121

serializable isolation level 162,
164

serialization 19
servlet engines 296
servlets

filters 304, 314
MVC writing approach 298
simple action 298

Session API
as first-level cache 180
closing 159
database synchronization

with a 159
disconnect 174
flexible scope of a 172
flushing the 160
granularity of a 172–173
kinds of state contained

in 325
long 173, 325–328

opening 304
persistence manager. See per-

sistence manager (Session)
relationship with

transactions 172–173
scope 172
serializability of 173
SessionFactory API compared

to 38
thread-local 300–306, 325

session beans (EJB)
command handlers 316
session façades 313
stateless 316–317

session cache 180
session façade 65
session façade patterns 311,

313–316, 320
SessionFactory API

as MBean 56
creation of 42, 126
initialization 296
metamodel 87
Session API compared to 38
statelessness of 298
storage of 297

session-per-application-
transaction 173

session-per-request 173
session-per-request-with-

detached-objects 173
set collections 211
setter method 74–75
shotgun change smells 312
single point associations 146
smells, code 312
sorted collections 215–216
source-code

generation 349, 358–365
processing 385

SQL (structured query lan-
guage)

aggregate functions 272
aggregations 380
built-in types 9
Cartesian products 380
DDL 379
delete 380
existing 350, 364
legacy database 364

obtaining new instances
of 296–310

DML 379
expressing queries with 242

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

INDEX 407

SQL (structured query lan-
guage) (continued)

expressions 381
generation, enabling

dynamic 118
grouping 380
inner joins 258
insertions 379
JDBC and 5
join conditions 380
joins 258, 380
keywords, writing 251
logging 51
ordering 380
outer joins 259
passthrough 283–284
prepared statements 28
projections 380
quantification 381
queries 380
query hints 242
querying 380
relational data models 379
relational operations 4
restriction criterion 381
restrictions 380
schemas 83
statements 118
subselects 79, 281, 381
table creation and

management 379
table prefix 81
updates 379
user-defined types (UDT) 9

SQL data type systems 197
SQL database schemas 357
SQL statements

execution, timing of 127
startup, Hibernate 47, 77
state charts 116
static imports (JDK 1.5) 253,

257
stored procedures 6
strategy patterns 306
string matching 255
structured query language.

See SQL (structured query
language)

subgraphs
controlling detachment

of 119
propagating persistence

to 131
subqueries 281–282
subselects 281, 381
surrogate keys 91
SwarmCache 184
Swing 295
synchronization 392
system transactions 156

T

table per class hierarchy 99–100
table per concrete class 97–98,

237–238
table per subclass 101–102
table prefix, SQL 81
tables

as entities 197
audit logs 340–347
impact of large 390
mapping with composite

keys 333–338
mapping with natural

keys 331–332
relationship 149
restricting 366–367
SQL creation and manage-

ment of 379
ternary associations 230
ternary logic 253–254
theta-style joins 259, 267, 380
thread-local sessions 300, 309
tiers 311–312
timestamp cache 292
timestamp datatype 391
Tomcat 296
toolset, Hibernate

hbm2ddl. See hbm2ddl (Sche-
maExport)

hbm2java. See hbm2java
(CodeGenerator)

reversability of 351
SchemaUpdate 357
source and output

Transaction API 39, 158–160
transaction manager 157
transaction scope cache 176,

178
transactional concurrency

strategy 183
transactional write-behind 36
transaction-level cache

management 126
transactions

ACID criteria 155
ACID properties 322
ad hoc 301
application. See application

transactions
coarse-grained 167
commits 159, 305
consistency of 155
control 126
database. See database transac-

tions
defined 155, 322
demarcation 156
durability of 155
EJB declarative 313
fine-grained 167
isolation behavior 155
isolation of concurrent.

See isolation, transaction
lost update issue 162
management 158
Session API relationship

with 172–173
transaction-scoped identity 119,

177, 392
transient instances 138–139
transient lifecycle states 196
transient objects

defined 116
making persistent 126
transitioning to persistent

objects 116
transitive persistence 131
transparent persistence 65
transparent transactional write

behind 118, 160
triggers

database 339–340

Struts 295
subclasses, tables and 101–103

artifacts 349
top-down development 350, 371

transition 116
troubleshooting. See Q & A

Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

408 INDEX

try/catch blocks 305
tuples 379, 390
Type API 40
type systems 196–197
typesafe enumeration 208–210

U

UDT (user-defined types) 9
UML 61
unique constraint 354
uniqueResult() method 253
unit testing 64
units of work 155
unrepeatable read transaction

issue 162
unsafe data 391
unsaved-value attribute 138–139
update() method 128, 324
updates, mass 181
updates, SQL 379
user transactions 168
user-defined types (UDT) 9
UserType API 203, 337–338
utility classes 18, 296

V

Validatable API 40
validation

accessor methods and 73
true data 78

value type systems 196
version checks 323
versioning

combining with first-level ses-
sion cache 164

daylight savings and
automatic 391

legacy model 174
managed 169–171

W

web tiers
communication with domain

models 312
separation from business logic

tiers 312
where clauses

arithmetic expression sup-
port by 254

calling SQL functions in 255

evaluating expressions
with 253

expressing restrictions
with 252

restricting rows with 274
subqueries in 281

wrapped exceptions 316

X

XDoclet
embedded attributes in source

code 350
generation 372
Hibernate and 376
mapping file generation

372–376
mapping file

regeneration 351
metadata generation 371
overview 84–85
running 375
uses 376

XML
databinding 389
metadata and 43, 75, 352
Licensed to Jose Carlos Romero Figueroa <jose.romero@galicia.seresco.es>

	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions and downloads
	About the authors

	about Hibernate3 and EJB 3
	author online
	about the title and cover
	About the cover illustration

	Understanding object/relational persistence
	1.1 What is persistence?
	1.1.1 Relational databases
	1.1.2 Understanding SQL
	1.1.3 Using SQL in Java
	1.1.4 Persistence in object-oriented applications

	1.2 The paradigm mismatch
	1.2.1 The problem of granularity
	1.2.2 The problem of subtypes
	1.2.3 The problem of identity
	1.2.4 Problems relating to associations
	1.2.5 The problem of object graph navigation
	1.2.6 The cost of the mismatch

	1.3 Persistence layers and alternatives
	1.3.1 Layered architecture
	1.3.2 Hand-coding a persistence layer with SQL/JDBC
	1.3.3 Using serialization
	1.3.4 Considering EJB entity beans
	1.3.5 Object-oriented database systems
	1.3.6 Other options

	1.4 Object/relational mapping
	1.4.1 What is ORM?
	1.4.2 Generic ORM problems
	1.4.3 Why ORM?

	1.5 Summary

	Introducing and integrating Hibernate
	2.1 “Hello World” with Hibernate
	2.2 Understanding the architecture
	2.2.1 The core interfaces
	2.2.2 Callback interfaces
	2.2.3 Types
	2.2.4 Extension interfaces

	2.3 Basic configuration
	2.3.1 Creating a SessionFactory
	2.3.2 Configuration in non-managed environments
	2.3.3 Configuration in managed environments

	2.4 Advanced configuration settings
	2.4.1 Using XML-based configuration
	2.4.2 JNDI-bound SessionFactory
	2.4.3 Logging
	2.4.4 Java Management Extensions (JMX)

	2.5 Summary

	Mapping persistent classes
	3.1 The CaveatEmptor application
	3.1.1 Analyzing the business domain
	3.1.2 The CaveatEmptor domain model

	3.2 Implementing the domain model
	3.2.1 Addressing leakage of concerns
	3.2.2 Transparent and automated persistence
	3.2.3 Writing POJOs
	3.2.4 Implementing POJO associations
	3.2.5 Adding logic to accessor methods

	3.3 Defining the mapping metadata
	3.3.1 Metadata in XML
	3.3.2 Basic property and class mappings
	3.3.3 Attribute-oriented programming
	3.3.4 Manipulating metadata at runtime

	3.4 Understanding object identity
	3.4.1 Identity versus equality
	3.4.2 Database identity with Hibernate
	3.4.3 Choosing primary keys

	3.5 Fine-grained object models
	3.5.1 Entity and value types
	3.5.2 Using components

	3.6 Mapping class inheritance
	3.6.1 Table per concrete class
	3.6.2 Table per class hierarchy
	3.6.3 Table per subclass
	3.6.4 Choosing a strategy

	3.7 Introducing associations
	3.7.1 Managed associations?
	3.7.2 Multiplicity
	3.7.3 The simplest possible association
	3.7.4 Making the association bidirectional
	3.7.5 A parent/child relationship

	3.8 Summary

	Working with persistent objects
	4.1 The persistence lifecycle
	4.1.1 Transient objects
	4.1.2 Persistent objects
	4.1.3 Detached objects
	4.1.4 The scope of object identity
	4.1.5 Outside the identity scope
	4.1.6 Implementing equals() and hashCode()

	4.2 The persistence manager
	4.2.1 Making an object persistent
	4.2.2 Updating the persistent state of a detached instance
	4.2.3 Retrieving a persistent object
	4.2.4 Updating a persistent object
	4.2.5 Making a persistent object transient
	4.2.6 Making a detached object transient

	4.3 Using transitive persistence in Hibernate
	4.3.1 Persistence by reachability
	4.3.2 Cascading persistence with Hibernate
	4.3.3 Managing auction categories
	4.3.4 Distinguishing between transient and detached instances

	4.4 Retrieving objects
	4.4.1 Retrieving objects by identifier
	4.4.2 Introducing HQL
	4.4.3 Query by criteria
	4.4.4 Query by example
	4.4.5 Fetching strategies
	4.4.6 Selecting a fetching strategy in mappings
	4.4.7 Tuning object retrieval

	4.5 Summary

	Transactions, concurrency, and caching
	Transactions, concurrency, and caching
	5.1 Understanding database transactions
	5.1.1 JDBC and JTA transactions
	5.1.2 The Hibernate Transaction API
	5.1.3 Flushing the Session
	5.1.4 Understanding isolation levels
	5.1.5 Choosing an isolation level
	5.1.6 Setting an isolation level
	5.1.7 Using pessimistic locking

	5.2 Working with application transactions
	5.2.1 Using managed versioning
	5.2.2 Granularity of a Session
	5.2.3 Other ways to implement optimistic locking

	5.3 Caching theory and practice
	5.3.1 Caching strategies and scopes
	5.3.2 The Hibernate cache architecture
	5.3.3 Caching in practice

	5.4 Summary

	Advanced mapping concepts
	6.1 Understanding the Hibernate type system
	6.1.1 Built-in mapping types
	6.1.2 Using mapping types

	6.2 Mapping collections of value types
	6.2.1 Sets, bags, lists, and maps

	6.3 Mapping entity associations
	6.3.1 One-to-one associations
	6.3.2 Many-to-many associations

	6.4 Mapping polymorphic associations
	6.4.1 Polymorphic many-to-one associations
	6.4.2 Polymorphic collections
	6.4.3 Polymorphic associations and table-per-concrete-class

	6.5 Summary

	Retrieving objects efficiently
	7.1 Executing queries
	7.1.1 The query interfaces
	7.1.2 Binding parameters
	7.1.3 Using named queries

	7.2 Basic queries for objects
	7.2.1 The simplest query
	7.2.2 Using aliases
	7.2.3 Polymorphic queries
	7.2.4 Restriction
	7.2.5 Comparison operators
	7.2.6 String matching
	7.2.7 Logical operators
	7.2.8 Ordering query results

	7.3 Joining associations
	7.3.1 Hibernate join options
	7.3.2 Fetching associations
	7.3.3 Using aliases with joins
	7.3.4 Using implicit joins
	7.3.5 Theta-style joins
	7.3.6 Comparing identifiers

	7.4 Writing report queries
	7.4.1 Projection
	7.4.2 Using aggregation
	7.4.3 Grouping
	7.4.4 Restricting groups with having
	7.4.5 Improving performance with report queries

	7.5 Advanced query techniques
	7.5.1 Dynamic queries
	7.5.2 Collection filters
	7.5.3 Subqueries
	7.5.4 Native SQL queries

	7.6 Optimizing object retrieval
	7.6.1 Solving the n+1 selects problem
	7.6.2 Using iterate() queries
	7.6.3 Caching queries

	7.7 Summary

	Writing Hibernate applications
	8.1 Designing layered applications
	8.1.1 Using Hibernate in a servlet engine
	8.1.2 Using Hibernate in an EJB container

	8.2 Implementing application transactions
	8.2.1 Approving a new auction
	8.2.2 Doing it the hard way
	8.2.3 Using detached persistent objects
	8.2.4 Using a long session
	8.2.5 Choosing an approach to application transactions

	8.3 Handling special kinds of data
	8.3.1 Legacy schemas and composite keys
	8.3.2 Audit logging

	8.4 Summary

	Using the toolset
	9.1 Development processes
	9.1.1 Top down
	9.1.2 Bottom up
	9.1.3 Middle out (metadata oriented)
	9.1.4 Meet in the middle
	9.1.5 Roundtripping

	9.2 Automatic schema generation
	9.2.1 Preparing the mapping metadata
	9.2.2 Creating the schema
	9.2.3 Updating the schema

	9.3 Generating POJO code
	9.3.1 Adding meta-attributes
	9.3.2 Generating finders
	9.3.3 Configuring hbm2java
	9.3.4 Running hbm2java

	9.4 Existing schemas and Middlegen
	9.4.1 Starting Middlegen
	9.4.2 Restricting tables and relationships
	9.4.3 Customizing the metadata generation
	9.4.4 Generating hbm2java and XDoclet metadata

	9.5 XDoclet
	9.5.1 Setting value type attributes
	9.5.2 Mapping entity associations
	9.5.3 Running XDoclet

	9.6 Summary

	SQL fundamentals
	ORM implementation strategies
	B.1 Properties or fields?
	B.2 Dirty-checking strategies
	B.2.1 Inheritance from generated code
	B.2.2 Source-code processing
	B.2.3 Bytecode processing
	B.2.4 Reflection
	B.2.5 Runtime bytecode generation
	B.2.6 “Generic” objects

	Back in the real world
	C.1 The strange copy
	C.2 The more the better
	C.3 We don’t need primary keys
	C.4 Time isn’t linear
	C.5 Dynamically unsafe
	C.6 To synchronize or not?
	C.7 Really fat client
	C.8 Resuming Hibernate

	references
	index

